Skip to main content
Log in

Coumarin-Pyrazole Hybrid with Red Shifted ESIPT Emission and AIE Characteristics - a Comprehensive Study

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The newly synthesized three coumarin pyrazole hybrid excited state intramolecular proton transfer (ESIPT) dyes show efficient charge transfer from the pyrazole ring and the coumarin towards the electron withdrawing dicyanovinylene group as revealed from the frontier molecular orbitals. Aggregation induced emission enhancement (AIEE) studies with 2-((3-(4-hydroxy-2-oxo-2H-chromen-3-yl)-1-phenyl-1H-pyrazol-4-yl)methylene) malononitrile showed 9 fold increase in the emission enhancement in 90% DMF-H2O mixture. Lippert-Mataga theory explained the solvatochromic behavior of the dyes in various solvents. The charge transfer characteristics and non-linear optical (NLO) properties have been supported and correlated with bond length alternation, bond order alternation and vibrational spectrum. As values of bond order alternation (BOA) tend to be more towards negative and as the value of α increases β decreases while the values of γ depends on the values of α and β. The observed values of γ are positive which revealed that β contributes significantly. The dyes exhibit linear and NLO properties superior to urea. (E)-2-(3-(2-(3-(4-Hydroxy-2-oxo-2H-chromen-3-yl)-1-phenyl-1H-pyrazol-4-yl)vinyl)-5,5-dimethylcyclohex-2-en-1-ylidene) malononitrile shows enhanced linear and non-linear properties among the three dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shreykar MR, Sekar N (2016) Resonance induced proton transfer leading to NIR emission in Coumarin Thiazole hybrid dyes: synthesis and DFT insights. Tetrahedron Lett 57:4174–4177. doi:10.1016/j.tetlet.2016.07.097

    Article  CAS  Google Scholar 

  2. Suzuki N, Fukazawa A, Nagura K et al (2014) A strap strategy for construction of an excited-state intramolecular proton transfer (ESIPT) system with dual fluorescence. Angew Chemie - Int Ed 53:8231–8235. doi:10.1002/anie.201404867

    Article  CAS  Google Scholar 

  3. Kwon JE, Park SY (2011) Advanced organic optoelectronic materials: harnessing excited-state intramolecular proton transfer (ESIPT) process. Adv Mater 23:3615–3642. doi:10.1002/adma.201102046

    Article  CAS  PubMed  Google Scholar 

  4. Tseng H-W, Liu J-Q, Chen Y-A et al (2015) Harnessing excited-state intramolecular proton-transfer reaction via a series of amino-type hydrogen-bonding molecules. J Phys Chem Lett 6:1477–1486. doi:10.1021/acs.jpclett.5b00423

    Article  CAS  PubMed  Google Scholar 

  5. Mutai T, Sawatani H, Shida T et al (2013) Tuning of excited-state intramolecular proton transfer (ESIPT) fluorescence of imidazo[1,2-a]pyridine in rigid matrices by substitution effect. J Org Chem 78:2482–2489. doi:10.1021/jo302711t

    Article  CAS  PubMed  Google Scholar 

  6. Phatangare KR, Lanke SK, Sekar N (2014) Fluorescent coumarin derivatives with viscosity sensitive emission - synthesis, photophysical properties and computational studies. J Fluoresc 24:1263–1274. doi:10.1007/s10895-014-1410-3

    Article  CAS  PubMed  Google Scholar 

  7. Deshmukh MS, Sekar N (2015) Photophysical properties of ESIPT inspired fluorescent 2-(2-hydroxyphenyl)-6-methylimidazo[4,5-f]isoindole-5,7(1H,6H)-dione and its derivative: experimental and DFT based approach. Spectrochim Acta Part A Mol Biomol Spectrosc 135:457–465. doi:10.1016/j.saa.2014.07.021

    Article  CAS  Google Scholar 

  8. Tathe AB, Gupta VD, Shreykar MR et al (2014) Excited state intramolecular proton transfer of 2-(2′,6′-dihydroxyphenyl)benzoxazole: insights using computational methods. J Lumin 154:267–273. doi:10.1016/j.jlumin.2014.04.044

    Article  CAS  Google Scholar 

  9. Lapinski L, Nowak MJ, Nowacki J et al (2009) A bistable molecular switch driven by photoinduced hydrogen-atom transfer. ChemPhysChem 10:2290–2295. doi:10.1002/cphc.200900190

    Article  CAS  PubMed  Google Scholar 

  10. Liu B, Wang H, Wang T et al (2012) A new ratiometric ESIPT sensor for detection of palladium species in aqueous solution. Chem Commun 48:2867. doi:10.1039/c2cc17677g

    Article  CAS  Google Scholar 

  11. Chou P, McMorrow D, Aartsma J, Kasha M (1984) The proton-transfer laser. Galn Spectrum and amplification of spontaneous Emissin of 3-Hydroxyflavone. J Phys Chem 88:4596–4599

    Article  CAS  Google Scholar 

  12. Kim S, Park S, Yoshida I, Kawai H (2002) Amplified spontaneous emission from the film of poly (aryl ether) dendrimer encapsulating excited-state intramolecular proton transfer dye. J Phys Chem B 106:9291–9294. doi:10.1021/jp021048x

    Article  CAS  Google Scholar 

  13. Kim S, Park SY (2003) Photochemically gated protonation effected by intramolecular hydrogen bonding: towards stable fluorescence imaging in polymer films. Adv Mater 15:1341–1344. doi:10.1002/adma.200305050

    Article  CAS  Google Scholar 

  14. Roshal A, Grigorovich A (1998) Flavonols and crown-flavonols as metal cation chelators. The different nature of Ba2+ and Mg2+ complexes. J Phys Chem A 102:5907–5914. doi:10.1021/jp972519w

    Article  CAS  Google Scholar 

  15. Parsapour F, Kelley DF (1996) Torsional and proton transfer dynamics in substituted 3-Hydroxyflavones. J Phys Chem 100:2791–2798. doi:10.1021/jp9520106

    Article  CAS  Google Scholar 

  16. Kim S, Seo J, Jung HK et al (2005) White luminescence from polymer thin films containing excited-state intramolecular proton-transfer dyes. Adv Mater 17:2077–2082. doi:10.1002/adma.200401739

    Article  CAS  Google Scholar 

  17. Abou-zied OK, Jimenez R, Thompson EHZ et al (2002) Solvent-dependent Photoinduced Tautomerization of 2- ( 2 ′ -Hydroxyphenyl ) benzoxazole. J Phys Chem A 106:3665–3672

    Article  CAS  Google Scholar 

  18. Chou P, Chen Y, Yu W et al (2001) Excited-state intramolecular proton transfer in 10-Hydroxybenzo [ h ] quinoline. J Phys Chem 105:1731–1740

    Article  CAS  Google Scholar 

  19. Seo J, Kim S, Park SY (2004) Strong solvatochromic fluorescence from the intramolecular charge-transfer state created by excited-state intramolecular proton transfer. J Am Chem Soc 126:11154–11155. doi:10.1021/ja047815i

    Article  CAS  PubMed  Google Scholar 

  20. Deperasińska I, Gryko DT, Karpiuk E et al (2012) Low-temperature spectra of the analogues of 10-hydroxybenzo[h]quinoline as an indication of barrierless ESIPT. J Phys Chem A 116:12049–12055. doi:10.1021/jp309340x

    Article  CAS  PubMed  Google Scholar 

  21. Hanson K, Patel N, Whited MT et al (2011) Substituted 1,3-bis(imino)isoindole diols: a new class of proton transfer dyes. Org Lett 13:1598–1601. doi:10.1021/ol103106m

    Article  CAS  PubMed  Google Scholar 

  22. Kanosue K, Augulis R, Peckus D et al (2016) Polyimide and imide compound exhibiting bright red fluorescence with very large Stokes shifts via excited-state intramolecular proton transfer II. Ultrafast Proton Transfer Dynamics in the Excited State Macromolecules 49:1848–1857. doi:10.1021/acs.macromol.5b02224

    CAS  Google Scholar 

  23. Miller RD, Moylan CR, Reiser O, Walsh CA (1993) Heterocyclic azole nonlinear optical chromophores. 1. Donor-acceptor substituted Pyrazole derivatives. Chem Mater:625–632. doi:10.1021/cm00029a009

  24. Kulhánek J, Bureš F (2012) Imidazole as a parent π-conjugated backbone in charge-transfer chromophores. Beilstein J Org Chem 8:25–49. doi:10.3762/bjoc.8.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Elguero J (1974) In comprehensive heterocyclic chemistry. In: Vol 5, part 4A. Pergamom Press: New York, p 167ff

  26. Tl Jacobs. (1957) In Heterocyclic Compounds

  27. Cook MJ, Katrizky AR, Linda P (1974) In advances in heterocyclic chemistry. Academic Press, New York, p 261

    Google Scholar 

  28. Barbera J, Clays K, Gimenez R et al (1998) Versatile optical materials: fluorescence, non-linear optical and mesogenic properties of selected 2-pyrazoline derivatives. J Mater Chem 8:1725–1730. doi:10.1039/A802070A

    Article  CAS  Google Scholar 

  29. Wei XQ, Yang G, Cheng JB et al (2007) Synthesis of novel light-emitting calix[4]arene derivatives and their luminescent properties. Opt Mater (Amst) 29:936–940. doi:10.1016/j.optmat.2006.02.005

    Article  CAS  Google Scholar 

  30. Chen XL, Yu R, Zhang QK et al (2013) Rational design of strongly blue-emitting cuprous complexes with thermally activated delayed fluorescence and application in solution-processed OLEDS. Chem Mater 25:3910–3920. doi:10.1021/cm4024309

    Article  CAS  Google Scholar 

  31. Ma CQ, Zhang LQ, Zhou JH et al (2002) 1,3-diphenyl-5-(9-phenanthryl)-4,5-dihydro-1H-pyrazole (DPPhP): structure, properties, and application in organic light-emitting diodes. J Mater Chem 12:3481–3486. doi:10.1039/B208130J

    Article  CAS  Google Scholar 

  32. Lanke SK, Sekar N (2016) Aggregation induced emissive carbazole-based push pull NLOphores: synthesis, photophysical properties and DFT studies. Dyes Pigments 124:82–92. doi:10.1016/j.dyepig.2015.09.013

    Article  CAS  Google Scholar 

  33. Lanke SK, Sekar N (2016) Pyrazole based solid state emissive NLOphores with TICT characteristics: synthesis, DFT and TDDFT studies. Dyes Pigments 126:62–75. doi:10.1016/j.dyepig.2015.11.014

    Article  CAS  Google Scholar 

  34. Lanke SK, Sekar N (2016) Coumarin push-pull NLOphores with red emission: Solvatochromic and theoretical approach. J Fluoresc 26:949–962. doi:10.1007/s10895-016-1783-6

    Article  CAS  PubMed  Google Scholar 

  35. Thorat KG, Tayade RP, Sekar N (2016) Acridine-1, 8-diones – a new class of thermally stable NLOphores: Photophysical, (hyper)polarizability and TD-DFT studies. Opt Mater (Amst) 62:306–319. doi:10.1016/j.optmat.2016.10.020

    Article  CAS  Google Scholar 

  36. Chemate S, Sekar N (2016) Indole-based NLOphoric donor-π-acceptor Styryl dyes: synthesis. Spectral Properties and Computational Studies J Fluoresc doi. doi:10.1007/s10895-016-1901-5

    Google Scholar 

  37. Shi Y, Lou AJT, He GS et al (2015) Cooperative coupling of Cyanine and Tictoid twisted π-systems to amplify organic chromophore cubic nonlinearities. J Am Chem Soc 137:4622–4625. doi:10.1021/jacs.5b01042

    Article  CAS  PubMed  Google Scholar 

  38. Deckers S, Vandendriessche S, Cornelis D et al (2014) Poly(3-alkylthiophene)s show unexpected second-order nonlinear optical response. Chem Commun (Camb) 50:2741–2743. doi:10.1039/c3cc48099b

    Article  CAS  Google Scholar 

  39. Meyers F, Marder SR, Pierce BM et al (1994) Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (alpha ,beta, and gamma) and bond length alternation. J Am Chem Soc 116:10703–10714. doi:10.1021/ja00102a040

    Article  CAS  Google Scholar 

  40. Kang H, Facchetti A, Jiang H et al (2007) Ultralarge Hyperpolarizability twisted π-electron system electro-optic chromophores:  synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational Studi. J Am Chem Soc 129:3267–3286. doi:10.1021/ja0674690

    Article  CAS  PubMed  Google Scholar 

  41. Kang H, Facchetti A, Zhu P et al (2005) Exceptional molecular hyperpolarizabilities in twisted p-electron system chromophores. Angew Chemie - Int Ed 44:7922–7925. doi:10.1002/anie.200501581

    Article  CAS  Google Scholar 

  42. Brédas JL (1985) Relationship between band gap and bond length alternation in organic conjugated polymers. J Chem Phys 82:3808. doi:10.1063/1.448868

    Article  Google Scholar 

  43. Roncali J (2007) Molecular engineering of the band gap of ??-conjugated systems: facing technological applications. Macromol Rapid Commun 28:1761–1775. doi:10.1002/marc.200700345

    Article  CAS  Google Scholar 

  44. Van Mullekom HAM, Vekemans JAJM, Havinga EE, Meijer EW (2001) Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers. Mater Sci Eng R Reports. doi:10.1016/S0927-796X(00)00029-2

    Google Scholar 

  45. Barlow S, Brédas J-L, Getmanenko YA et al (2014) Polymethine materials with solid-state third-order optical susceptibilities suitable for all-optical signal-processing applications. Mater Horizons 1:577. doi:10.1039/c4mh00068d

    Article  CAS  Google Scholar 

  46. Kim TD, Kang JW, Luo J et al (2007) Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses. J Am Chem Soc 129:488–489. doi:10.1021/ja067970s

    Article  CAS  PubMed  Google Scholar 

  47. Dalton LR, Sullivan PA, Bale DH (2010) Electric field poled organic electro-optic materials: state of the art and future prospects. Chem Rev 110:25–55. doi:10.1021/cr9000429

    Article  CAS  PubMed  Google Scholar 

  48. Kwon OP, Kwon SJ, Jazbinsek M et al (2011) Phenolic polyene crystals with tailored physical properties and very large nonlinear optical response. Chem Mater 23:239–246. doi:10.1021/cm103426w

    Article  CAS  Google Scholar 

  49. Gieseking RL, Mukhopadhyay S, Risko C et al (2014) 25th anniversary article: design of polymethine dyes for all-optical switching applications: guidance from theoretical and computational studies. Adv Mater 26:68–84. doi:10.1002/adma.201302676

    Article  CAS  PubMed  Google Scholar 

  50. Marder SR, Perry JW, Tiemann BG et al (1993) Direct observation of reduced bond length alternation in donor-acceptor polyenes. J Am Chem Soc 115:2524–2526. doi:10.1021/ja00059a067

    Article  CAS  Google Scholar 

  51. Bouit P-A, Aronica C, Toupet L, Boris Le Guennic CA, Olivier M (2010) Continuous symmetry breaking induced by ion pairing effect in Heptamethine Cyanine dyes: beyond the Cyanine limit. J Am Chem Soc 132:4328–4335. doi:10.1021/ja9100886

    Article  CAS  PubMed  Google Scholar 

  52. Gieseking RL, Risko C, Brédas JL (2015) Distinguishing the effects of bond-length alternation versus bond-order alternation on the nonlinear optical properties of conjugated chromophores. J Phys Chem Lett 6:2158–2162. doi:10.1021/acs.jpclett.5b00812

    Article  CAS  PubMed  Google Scholar 

  53. Marder SR, Gorman CB, Meyers F et al (1994) A unified description of linear and nonlinear polarization in organic Polymethine dyes. Science 265:632–635

    Article  CAS  PubMed  Google Scholar 

  54. Murugan NA, Kongsted J, Rinkevicius Z, Agren H (2010) Breakdown of the first hyperpolarizability/bond-length alternation parameter relationship. Proc Natl Acad Sci 107:16453–16458. doi:10.1073/pnas.1006572107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hamdi N, Saoud M, Romerosa A, Ben HR (2008) Synthesis, spectroscopic and antibacterial investigations of new hydroxy ethers and heterocyclic coumarin derivatives. J Heterocycl Chem 45:1835–1842. doi:10.1002/jhet.5570450644

    Article  CAS  Google Scholar 

  56. Broman S, Brand S, Parker C (2011) Optimized synthesis and detailed NMR spectroscopic characterization of the 1, 8a-dihydroazulene-1, 1-dicarbonitrile photoswitch. Arkivoc ix:51–67. doi:10.3998/ark.5550190.0012.904

    Google Scholar 

  57. Wolfgang S, Hojas G (2004) Ring closure reactions of 3-Arylhydrazonoalkyl-quinolin-2-ones to 1-aryl-pyrazolo[4,3-c]quinolin-2-ones. J Heterocycl Chem 41:681–690. doi:10.1002/jhet.5570410505

    Article  Google Scholar 

  58. Dell’Amico L, Rassu G, Zambrano V et al (2014) Exploring the vinylogous reactivity of cyclohexenylidene malononitriles: switchable regioselectivity in the organocatalytic asymmetric addition to enals giving highly enantioenriched carbabicyclic structures. J Am Chem Soc 136:11107–11114. doi:10.1021/ja5054576

    Article  CAS  PubMed  Google Scholar 

  59. Padilha LA, Webster S, Przhonska OV et al (2009) Nonlinear absorption in a series of donor–π–acceptor cyanines with different conjugation lengths. J Mater Chem 19:7503. doi:10.1039/b907344b

    Article  CAS  Google Scholar 

  60. Padilha LA, Webster S, Przhonska OV et al (2010) Efficient two-photon absorbing acceptor-pi-acceptor polymethine dyes. J Phys Chem A 114:6493–6501. doi:10.1021/jp100963e

    Article  CAS  PubMed  Google Scholar 

  61. Devlin FJ, Finley JW, Stephens PJ, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields: a comparison of local, nonlocal, and hybrid density Functionals. J Phys Chem 98:11623–11627. doi:10.1021/j100046a014

    Article  Google Scholar 

  62. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372. doi:10.1063/1.464304

    Article  CAS  Google Scholar 

  63. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. doi:10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  64. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  65. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  66. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724. doi:10.1063/1.1674902

    Article  CAS  Google Scholar 

  67. Krishnan R, Schlegel HB, Pople JA (1980) Derivative studies in configuration-interaction theory. J Chem Phys 72:4654–4655. doi:10.1063/1.439708

    Article  CAS  Google Scholar 

  68. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093. doi:10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  69. Wong MW, Frisch MJ, Wiberg KB (1991) Solvent effects. 1. The mediation of electrostatic effects by solvents. J Am Chem Soc 113:4776–4782. doi:10.1021/ja00013a010

    Article  CAS  Google Scholar 

  70. Wazzan NA, Al-Qurashi OS, Faidallah HM (2016) DFT/ and TD-DFT/PCM calculations of molecular structure, spectroscopic characterization, NLO and NBO analyses of 4-(4-chlorophenyl) and 4-[4-(dimethylamino) phenyl]-2-oxo-1,2,5,6-tetrahydrobenzo[h]quinoline-3-carbonitrile dyes. J Mol Liq 223:29–47. doi:10.1016/j.molliq.2016.07.146

    Article  CAS  Google Scholar 

  71. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, li–F. J Comput Chem 4:294–301. doi:10.1002/jcc.540040303

    Article  CAS  Google Scholar 

  72. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision C.01. Gaussian 09, Revis, vol B.01. Gaussian, Inc, Wallingford

    Google Scholar 

  73. Dong Y, Xu B, Zhang J et al (2012) Piezochromic luminescence based on the molecular aggregation of 9,10-Bis((E)-2-(pyrid-2-yl)vinyl)anthracene. Angew Chemie - Int Ed 51:10782–10785. doi:10.1002/anie.201204660

    Article  CAS  Google Scholar 

  74. Hong Y, Lam JWY, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun:4332. doi:10.1039/b904665h

    Google Scholar 

  75. Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361. doi:10.1039/c1cs15113d

    Article  CAS  PubMed  Google Scholar 

  76. Mei J, Hong Y, Lam JWY et al (2014) Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater 26:5429–5479. doi:10.1002/adma.201401356

    Article  CAS  PubMed  Google Scholar 

  77. Mei J, Leung NLC, Kwok RTK et al (2015) Aggregation-induced emission: together we Shine, united we soar! Chem Rev 115:11718–11940. doi:10.1021/acs.chemrev.5b00263

    Article  CAS  PubMed  Google Scholar 

  78. Lippert E (1957) No. Ber Bunsenges. Phys Chem 61:962

    CAS  Google Scholar 

  79. Mataga N, Kaifu Y, Koizumi M (1956) Solvent effects upon fluorescence spectra and the Dipolemoments of excited molecules. Bull Chem Soc Jpn 29:465–470. doi:10.1246/bcsj.29.465

    Article  CAS  Google Scholar 

  80. Kawski A (2002) On the estimation of excited-state dipole moments from solvatochromic shifts of absorption and fluorescence spectra. Zeitschrift Fur Naturforsch Sect a-a J Phys Sci 57:255–262

    CAS  Google Scholar 

  81. Weller A (1956) Intramolecular proton transfer in excited states. Z Elektrochem Angew Phys Chem 60:1144–1147

    CAS  Google Scholar 

  82. Rettig W (1991) Solvent polarity dependent formation dynamics of TICT states. I Differential solvatokinetics Berichte der Bunsengesellschaft für Phys Chemie 95:259–263

    Article  CAS  Google Scholar 

  83. Mataga N, Okada T, Hiroshi Masuhara E (2012) Dynamics and Mechanisms of Photoinduced Electron Transfer and Related Phenomena. Elsevier, North-Holland

    Google Scholar 

  84. Warde U, Rhyman L, Ramasami P, Sekar N (2015) DFT studies of the Photophysical properties of fluorescent and semiconductor polycyclic Benzimidazole derivatives. J Fluoresc 25:685–694. doi:10.1007/s10895-015-1554-9

    Article  CAS  PubMed  Google Scholar 

  85. Margar SN, Rhyman L, Ramasami P, Sekar N (2016) Spectrochimica Acta part a : molecular and biomolecular spectroscopy fluorescent difluoroboron-curcumin analogs : an investigation of the electronic structures and photophysical properties. Spectrochim Acta - Part A Mol Biomol Spectrosc 152:241–251. doi:10.1016/j.saa.2015.07.064

    Article  CAS  Google Scholar 

  86. Liu J, Gao W, Kityk IV et al (2015) Optimization of polycyclic electron-donors based on julolidinyl structure in push–pull chromophores for second order NLO effects. Dyes Pigments 122:74–84. doi:10.1016/j.dyepig.2015.06.007

    Article  CAS  Google Scholar 

  87. Thorat KG, Sekar N (2016) Pyrrole-thiazole based push-pull chromophores: an experimental and theoretical approach to structural, spectroscopic and NLO properties of the novel styryl dyes. J Photochem Photobiol A Chem. doi:10.1016/j.jphotochem.2016.10.009

    Google Scholar 

  88. Shreykar MR, Sekar N (2017) Coumarin-rhodamine hybrids - synthesis, Photophysical properties, NLO properties and DFT studies. Chemistry Select 2:1464–1478. doi:10.1002/slct.201601879

    CAS  Google Scholar 

  89. Shreykar MR, Sekar N (2017) Stimuli-responsive luminescent coumarin thiazole hybrid dye: synthesis, aggregation induced emission, thermochromism and DFT study. Dyes Pigments 142:121–125. doi:10.1016/j.dyepig.2017.03.028

    Article  CAS  Google Scholar 

  90. Shreykar MR, Jadhav A, Sekar N (2017) Aggregation induced emissive and NLOphoric Coumarin Thiazole hybrid dyes: synthesis, Photophysics and TD-DFT Studies. J Lumin. doi:10.1016/j.jlumin.2017.03.053

    Google Scholar 

  91. Abbotto A, Beverina L, Bradamante S et al (2003) A distinctive example of the cooperative interplay of structure and environment in tuning of intramolecular charge transfer in second-order nonlinear optical chromophores. Chem - A Eur J 9:1991–2007. doi:10.1002/chem.200204356

    Article  CAS  Google Scholar 

  92. Momicchioli F, Ponterini G, Vanossi D (2008) First- and second-order polarizabilities of simple merocyanines. An experimental and theoretical reassessment of the two-level model. J Phys Chem A 112:11861–11872. doi:10.1021/jp8080854

    Article  CAS  PubMed  Google Scholar 

  93. Oudar JL, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys 66:2664. doi:10.1063/1.434213

    Article  CAS  Google Scholar 

  94. Bruni S, Cariati E, Cariati F et al (2001) Determination of the quadratic hyperpolarizability of trans-4-[4-(dimethylamino)styryl]pyridine and 5-dimethylamino-1,10-phenanthroline from solvatochromism of absorption and fluorescence spectra: a comparison with the electric-field-induced second-harmon. Spectrochim Acta - Part A Mol Biomol Spectrosc 57:1417–1426. doi:10.1016/S1386-1425(00)00483-2

    Article  CAS  Google Scholar 

  95. Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects Chem Rev 94:195–242. doi:10.1021/cr00025a007

    CAS  Google Scholar 

  96. Kanis DR, Lacroix PG, Ratner MA, Marks TJ (1994) Electronic structure and quadratic Hyperpolarizabilities in Organotransition-metal chromophores having weakly coupled pi-networks. Unusual Mechanisms for Second-Order Response. J Am Chem Soc 116:10089–10102. doi:10.1021/ja00101a030

    Article  CAS  Google Scholar 

  97. Paley MS, Harris JM, Looser H et al (1989) A solvatochromic method for determining second-order polarizabilities of organic molecules. J Org Chem 54:3774–3778. doi:10.1021/jo00277a007

    Article  CAS  Google Scholar 

  98. Gorman CB, Marder SR (1993) An investigation of the interrelationships between linear and nonlinear polarizabilities and bond-length alternation in conjugated organic molecules. Proc Natl Acad Sci U S A 90:11297–11301. doi:10.1073/pnas.90.23.11297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Vidya S, Ravikumar C, Hubert Joe I et al (2011) Vibrational spectra and structural studies of nonlinear optical crystal ammonium D, L-tartrate: a density functional theoretical approach. J Raman Spectrosc 42:676–684. doi:10.1002/jrs.2743

    Article  CAS  Google Scholar 

  100. Meganathan C, Sebastian S, Kurt M et al (2010) Molecular structure, spectroscopic (FTIR, FTIR gas phase, FT-Raman) first-order hyperpolarizability and HOMO-LUMO analysis of 4-methoxy-2-methyl benzoic acid. J Raman Spectrosc 41:1369–1378. doi:10.1002/jrs.2562

    Article  CAS  Google Scholar 

  101. Pir H, Günay N, Tamer Ö et al (2013) Theoretical investigation of 5-(2-acetoxyethyl)-6-methylpyrimidin-2,4-dione: conformational study, NBO and NLO analysis, molecular structure and NMR spectra. Spectrochim Acta A Mol Biomol Spectrosc 112:331–342. doi:10.1016/j.saa.2013.04.063

    Article  CAS  PubMed  Google Scholar 

  102. Prasad O, Sinha L, Misra N et al (2010) Molecular structure and vibrational study on 2,3-dihydro-1H-indene and its derivative 1H-indene-1,3(2H)-dione by density functional theory calculations. J Mol Struct THEOCHEM 940:82–86. doi:10.1016/j.theochem.2009.10.011

    Article  CAS  Google Scholar 

  103. Castiglioni C, Del Zoppo M, Zerbi G (1993) Vibrational Raman spectroscopy of Polyconjugated organic oligomers and polymers. J Raman Spectrosc 24:485–494. doi:10.1002/jrs.1250240804

    Article  CAS  Google Scholar 

  104. Ratajczak H, DebRus S, May M, Barycki J, Baran J (2000) Hydrogen-bonded organic solids with nonlinear optical properties. Bull Polish Acad Sci Chem 48:189–192. doi:10.1007/s13369-011-0151-8

  105. Quadar JL, Hierle R (1977) J Appl Phys 48:2699–2706. doi:10.1063/1.324120.

  106. Dietmar Heidrich (1995) A relation between the eikonal equation associated to a potential energy surface and a hyperbolic wave equation. J Chem Theory Comput. doi:10.1007/978-94-015-8539-2

    Google Scholar 

  107. MJ S (1983) Static and dynamic stereochemistry of push-pull and strained ethylenes. Topic Stereochem 14:83–181

  108. Bodart VP, Delhalle J, André J-M, Zyss J (1985) Prediction of longitudinal electric polarizabilities of conjugated chain molecules by scaling of ab initio calculations. Can J Chem 63:1631–1634. doi:10.1139/v85-273

    Article  CAS  Google Scholar 

  109. DeMelo CP, Silbey R (1988) Variational-perturbation treatment for the polarizabilities of conjugated chains. I. Theory and linear-polarizabilities results for polyenes. J Chem Phys 88:2558. doi:10.1063/1.454036

    Article  CAS  Google Scholar 

  110. Grant Bourhill J-LB, Cheng L, Marder SR et al (1994) Experimental demonstration of the dependence of the first Hyperpolarizability of donor-acceptor-substituted polyenes on the ground-state polarization and bond length alternation. Jouranl Am Chem Soc 116:2619–2620

    Article  Google Scholar 

  111. Thorat KG, Bhakhoa H, Ramasami P, Sekar N (2014) NIR-emitting Boradiazaindacene fluorophores -TD-DFT studies on electronic structure and Photophysical properties. J Fluoresc 25:69–78. doi:10.1007/s10895-014-1481-1

    Article  CAS  PubMed  Google Scholar 

  112. Thorat KG, Kamble P, Mallah R et al (2015) Congeners of Pyrromethene-567 dye: perspectives from synthesis, Photophysics, Photostability, laser, and TD-DFT theory. J Org Chem 80:6152–6164. doi:10.1021/acs.joc.5b00654

    Article  CAS  PubMed  Google Scholar 

  113. Phatangare KR, Gupta VD, Tathe AB et al (2013) ESIPT inspired fluorescent 2-(4-benzo[d]oxazol-2-yl)naphtho[1,2-d]oxazol-2- yl phenol: experimental and DFT based approach to photophysical properties. Tetrahedron 69:1767–1777. doi:10.1016/j.tet.2012.11.095

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Milind R. Shreykar is greatly thankful to University Grant Commission (U.G.C) and Technical Education Quality Improvement Programme (TEQIP), India for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaiyan Sekar.

Electronic supplementary material

ESM 1

(DOCX 839 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shreykar, M.R., Sekar, N. Coumarin-Pyrazole Hybrid with Red Shifted ESIPT Emission and AIE Characteristics - a Comprehensive Study. J Fluoresc 27, 1687–1707 (2017). https://doi.org/10.1007/s10895-017-2106-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2106-2

Keywords

Navigation