Skip to main content
Log in

NLOphoric 3,6-di(substituted quinoxalin) Carbazoles – Synthesis, Photophysical Properties and DFT Studies

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Synthesis of novel 3,6-di(substituted quinoxalin) carbazole fluorophores by the condensation of 1,1′-(9-ethyl-9H-carbazole-3,6-diyl)bis(2-bromoethanone) with methyl, chloro and unsubstituted o-phenylenediamine is presented. Synthesized derivatives are well characterized by 1H NMR, 13C NMR, FTIR and Mass spectroscopy. Photophysical studies are carried out using solvents of varying polarities revealed positive solvatochromism and intramolecular charge transfer from carbazole (Donor) to quinoxalin (Acceptor). Intramolecular charge transfer properties are correlated by dipole moment changes and different polarity functions like Lippert–Mataga, Bilot-Kawski, Bakhshiev and Liptay plots with very good regression factors. Mulliken hush-analysis further support charge transfer characteristic. Linear and Nonlinear optical properties are explained by solvatochromic data using two-level quantum mechanical model and are correlated with computational calculations using density functional theory at B3LYP/6-31G(d) level. First hyperpolarizability value of all the synthesized compounds is found to be greater than urea by >333 times. Moreover, increase of hyperpolarizability values from non-polar to polar solvents are in good correlation with the significant charge transfer characteristic in polar solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932. doi:10.1021/cr078381n

    Article  CAS  PubMed  Google Scholar 

  2. Zheng K, Lin W, Tan L et al (2014) A unique carbazole–coumarin fused two-photon platform: development of a robust two-photon fluorescent probe for imaging carbon monoxide in living tissues. Chem Sci 5:3439. doi:10.1039/C4SC00283K

    Article  CAS  Google Scholar 

  3. Sekar N, Umape PG, Lanke SK (2014) Synthesis of novel Carbazole fused Coumarin derivatives and DFT approach to study their Photophysical properties. J Fluoresc 24:1503–1518. doi:10.1007/s10895-014-1436-6

    Article  CAS  PubMed  Google Scholar 

  4. Singh P, Baheti A, Thomas KRJ (2011) Synthesis and optical properties of Acidochromic amine-substituted benzo[ a ]phenazines. J Org Chem 76:6134–6145. doi:10.1021/jo200857p

    Article  CAS  PubMed  Google Scholar 

  5. Zheng ML, Fujita K, Chen WQ et al (2011) Comparison of staining selectivity for subcellular structures by carbazole-based cyanine probes in nonlinear optical microscopy. Chembiochem 12:52–55. doi:10.1002/cbic.201000593

    Article  CAS  PubMed  Google Scholar 

  6. Joule JA (1984) Recent advances in the chemistry of 9H-carbazoles. Adv Heterocycl Chem. Elsevier, pp 83–198

  7. Morin J-F, Leclerc M (2001) Syntheses of conjugated polymers derived from N-alkyl-2,7-carbazoles. Macromolecules 34:4680–4682. doi:10.1021/ma010152u

    Article  CAS  Google Scholar 

  8. Yoon KR, Ko S-O, Lee SM, Lee H (2007) Synthesis and characterization of carbazole derived nonlinear optical dyes. Dyes Pigments 75:567–573. doi:10.1016/j.dyepig.2006.07.004

    Article  CAS  Google Scholar 

  9. Tsai J-H, Chueh C-C, Lai M-H et al (2009) Synthesis of new Indolocarbazole-acceptor alternating conjugated copolymers and their applications to thin film transistors and photovoltaic cells. Macromolecules 42:1897–1905. doi:10.1021/ma802720n

    Article  CAS  Google Scholar 

  10. Ning Z, Fu Y, Tian H (2010) Improvement of dye-sensitized solar cells: what we know and what we need to know. Energy Environ Sci 3:1170. doi:10.1039/c003841e

    Article  CAS  Google Scholar 

  11. Brunner K, van Dijken A, Börner H et al (2004) Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: tuning the HOMO level without influencing the triplet energy in small molecules. J Am Chem Soc 126:6035–6042. doi:10.1021/ja049883a

    Article  CAS  PubMed  Google Scholar 

  12. Zhang D, Martín V, García-Moreno I et al (2011) Development of excellent long-wavelength BODIPY laser dyes with a strategy that combines extending π-conjugation and tuning ICT effect. Phys Chem Chem Phys 13:13026. doi:10.1039/c1cp21038f

    Article  CAS  PubMed  Google Scholar 

  13. Zhao YS, Fu H, Peng A et al (2008) Low-dimensional nanomaterials based on small organic molecules: Preparation and optoelectronic properties. Adv Mater 20:2859–2876. doi:10.1002/adma.200800604

    Article  CAS  Google Scholar 

  14. Law KY (1993) Organic photoconductive materials: recent trends and developments. Chem Rev 93:449–486. doi:10.1021/cr00017a020

    Article  CAS  Google Scholar 

  15. Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA (2006) A ratiometric fluorescent viscosity sensor. J Am Chem Soc 128:398–399. doi:10.1021/ja056370a

    Article  PubMed  Google Scholar 

  16. Li Z, Dong YQ, Lam JWY et al (2009) Functionalized Siloles: versatile synthesis, aggregation-induced emission, and sensory and device applications. Adv Funct Mater 19:905–917. doi:10.1002/adfm.200801278

    Article  CAS  Google Scholar 

  17. Jadhav AG, Shinde SS, Lanke SK, Sekar N (2017) Benzophenone based fluorophore for selective detection of Sn2+ ion: experimental and theoretical study. Spectrochim Acta Part A Mol Biomol Spectrosc 174:291–296. doi:10.1016/j.saa.2016.11.051

    Article  CAS  Google Scholar 

  18. Jadhav AG, Kothavale S, Sekar N (2017) Red emitting triphenylamine based rhodamine analogous with enhanced Stokes shift and viscosity sensitive emission. Dyes Pigments 138:56–67. doi:10.1016/j.dyepig.2016.11.021

    Article  CAS  Google Scholar 

  19. Yang Z, Zhao N, Sun Y et al (2012) Highly selective red- and green-emitting two-photon fluorescent probes for cysteine detection and their bio-imaging in living cells. Chem Commun (Camb) 48:3442–3444. doi:10.1039/c2cc00093h

    Article  CAS  Google Scholar 

  20. Devaraj NK, Hilderbrand S, Upadhyay R et al (2010) Bioorthogonal turn-on probes for imaging small molecules inside living cells. Angew Chem Int Ed 49:2869–2872. doi:10.1002/anie.200906120

    Article  CAS  Google Scholar 

  21. Huang TH, Whang WT, Shen JY et al (2006) Dibenzothiophene/oxide and quinoxaline/pyrazine derivatives serving as electron-transport materials. Adv Funct Mater 16:1449–1456. doi:10.1002/adfm.200500823

    Article  CAS  Google Scholar 

  22. Son H, Han W, Yoo D et al (2009) Fluorescence control on panchromatic spectra via C-alkylation on Arylated Quinoxalines. J Org Chem 74:3175–3178

    Article  CAS  PubMed  Google Scholar 

  23. Son HJ, Han WS, Wee KR et al (2008) Turning on fluorescent emission from C-alkylation on quinoxaline derivatives. Org Lett 10:5401–5404. doi:10.1021/ol802287k

    Article  CAS  PubMed  Google Scholar 

  24. Zhao ZH, Jin H, Zhang YX et al (2011) Synthesis and properties of dendritic emitters with a fluorinated starburst oxadiazole core and twisted carbazole dendrons. Macromolecules 44:1405–1413. doi:10.1021/ma1024957

    Article  CAS  Google Scholar 

  25. Qi T, Liu Y, Qiu W et al (2008) Synthesis and properties of fluorene or carbazole-based and dicyanovinyl-capped n-type organic semiconductors. J Mater Chem 18:1131. doi:10.1039/b715920j

    Article  CAS  Google Scholar 

  26. Zhang X, Shim JW, Tiwari SP et al (2011) Dithienopyrrole–quinoxaline/pyridopyrazine donor–acceptor polymers: synthesis and electrochemical, optical, charge-transport, and photovoltaic properties. J Mater Chem 21:4971. doi:10.1039/c0jm04290k

    Article  CAS  Google Scholar 

  27. Paley MS, Harris JM, Looser H et al (1989) A solvatochromic method for determining second-order polarizabilities of organic molecules. J Org Chem 54:3774–3778. doi:10.1021/jo00277a007

    Article  CAS  Google Scholar 

  28. Chen L, Cui Y, Mei X et al (2007) Synthesis and characterization of triphenylamino-substituted chromophores for nonlinear optical applications. Dyes Pigments 72:293–298. doi:10.1016/j.dyepig.2005.09.008

    Article  CAS  Google Scholar 

  29. Wang Y, Frattarelli DL, Facchetti A et al (2008) Twisted π-electron system electrooptic chromophores. Structural and electronic consequences of relaxing twist-inducing nonbonded repulsions. J Phys Chem C 112:8005–8015. doi:10.1021/jp8003135

    Article  CAS  Google Scholar 

  30. Momicchioli F, Ponterini G, Vanossi D (2008) First- and second-order polarizabilities of simple merocyanines. An experimental and theoretical reassessment of the two-level model J Phys Chem A 112:11861–11872. doi: 10.1021/jp8080854

  31. Qian Y (2008) 3,6-Disubstituted carbazole chromophores containing thiazole and benzothiazole units: synthesis, characterization and first-order hyperpolarizabilities. Dyes Pigments 76:277–281. doi:10.1016/j.dyepig.2006.08.040

    Article  Google Scholar 

  32. Huyskens FL, Huyskens PL, Persoons AP (1998) Solvent dependence of the first hyperpolarizability of p-nitroanilines: differences between nonspecific dipole-dipole interactions and solute-solvent H-bonds. J Chem Phys 108:8161–8171. doi:10.1063/1.476171

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, et al. (2009) Gaussian 09, revision C.01. Gaussian 09, Revis. B.01, Gaussian, Inc., Wallingford CT

  34. Thomas KRJ, Tyagi P (2010) Synthesis, spectra, and theoretical investigations of the Triarylamines based on 6 H -Indolo[2,3- b ]quinoxaline. J Org Chem 75:8100–8111. doi:10.1021/jo1016663

    Article  CAS  PubMed  Google Scholar 

  35. Treutler O, Ahlrichs R (1995) Efficient molecular numerical integration schemes. J Chem Phys 102:346. doi:10.1063/1.469408

    Article  CAS  Google Scholar 

  36. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372. doi:10.1063/1.464304

    Article  CAS  Google Scholar 

  37. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  38. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439. doi:10.1063/1.475855

    Article  CAS  Google Scholar 

  39. Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255:327–335. doi:10.1016/0009-2614(96)00349-1

    Article  CAS  Google Scholar 

  40. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093. doi:10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  41. Patil VS, Padalkar VS, Sekar N (2014) 2-methyl-4-oxo-N-(4-oxo-2-phenyl substituted-1,3-thiazolidin-3-yl)-3,4- dihydroquinazoline-5-carboxamides - a new range of fluorescent whiteners: synthesis and photophysical characterization. J Fluoresc 24:1077–1086. doi:10.1007/s10895-014-1387-y

    Article  PubMed  Google Scholar 

  42. Williams ATR, Winfield SA, Miller JN (1983) Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst 108:1067. doi:10.1039/an9830801067

    Article  CAS  Google Scholar 

  43. Telore RD, Satam MA, Sekar N (2015) Push-pull fluorophores with viscosity dependent and aggregation induced emissions insensitive to polarity. Dyes Pigments 122:359–367. doi:10.1016/j.dyepig.2015.07.017

    Article  CAS  Google Scholar 

  44. Chen Y, Ling Y, Ding L et al (2016) Quinoxaline-based cross-conjugated luminophores: charge transfer, piezofluorochromic, and sensing properties. J Mater Chem C 4:8496–8505. doi:10.1039/C6TC02945K

    Article  CAS  Google Scholar 

  45. Stock LM (1972) The origin of the inductive effect. J Chem Educ 49:400. doi:10.1021/ed049p400

    Article  CAS  Google Scholar 

  46. Kerber RC (2006) If It’s resonance, what is resonating? J Chem Educ 83:223. doi:10.1021/ed083p223

    Article  CAS  Google Scholar 

  47. Carlotti B, Flamini R, Kikaš I et al (2012) Intramolecular charge transfer, solvatochromism and hyperpolarizability of compounds bearing ethenylene or ethynylene bridges. Chem Phys 407:9–19. doi:10.1016/j.chemphys.2012.08.006

    Article  CAS  Google Scholar 

  48. Oudar JL (1977) Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J Chem Phys 67:446. doi:10.1063/1.434888

    Article  CAS  Google Scholar 

  49. Oudar JL, Zyss J (1982) Structural dependence of nonlinear-optical properties of methyl-(2,4-dinitrophenyl)-aminopropanoate crystals. Phys Rev A 26:2016–2027. doi:10.1103/PhysRevA.26.2016

    Article  CAS  Google Scholar 

  50. Kwon OP, Jazbinsek M, Seo JI et al (2010) First hyperpolarizability orientation in asymmetric pyrrole-based polyene chromophores. Dyes Pigments 85:162–170. doi:10.1016/j.dyepig.2009.10.019

    Article  CAS  Google Scholar 

  51. Mardar SR, Beratan DN, Cheng L-T (1991) Approaches for optimizing the first electronic hyperpolarizability of conjugated organic molecules. Science 80(252):103–106. doi:10.1126/science.252.5002.103

    Article  Google Scholar 

  52. Cheng LT, Tam W, Stevenson SH et al (1991) Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives. J Phys Chem 95:10631–10643. doi:10.1021/j100179a026

    Article  CAS  Google Scholar 

  53. Dirk CW, Cheng L-T, Kuzyk MG (1992) A simplified three-level model describing the molecular third-order nonlinear optical susceptibility. Int J Quantum Chem 43:27–36. doi:10.1002/qua.560430106

    Article  CAS  Google Scholar 

  54. Kuzyk MG, Dirk CW (1990) Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility. Phys Rev A 41:5098–5109. doi:10.1103/PhysRevA.41.5098

    Article  CAS  PubMed  Google Scholar 

  55. Wang Q, Newton MD (2008) Structure, energetics, and electronic coupling in the (TCNE 2 ) - • encounter complex in solution: a polarizable continuum study †. J Phys Chem B 112:568–576. doi:10.1021/jp0753528

    Article  CAS  PubMed  Google Scholar 

  56. Creutz C, Newton MD, Sutin N (1994) Metal—lingad and metal—metal coupling elements. J Photochem Photobiol A Chem 82:47–59. doi:10.1016/1010-6030(94)02013-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Rahul Telore is grateful to UGC-CAS for providing fellowship under SAP. Amol Jadhav is thankful to UGC for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaiyan Sekar.

Electronic supplementary material

ESM 1

(DOCX 4223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telore, R.D., Jadhav, A.G. & Sekar, N. NLOphoric 3,6-di(substituted quinoxalin) Carbazoles – Synthesis, Photophysical Properties and DFT Studies. J Fluoresc 27, 1531–1540 (2017). https://doi.org/10.1007/s10895-017-2092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2092-4

Keywords

Navigation