Skip to main content
Log in

Oligo(p-phenylene ethynylene) with Cyanoacrylate Terminal Groups and Graphene Composite as Fluorescent Chemical Sensor for Cysteine

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A chemical sensor for cysteine (Cys) was fabricated based on a fluorescent oligo(p-phenylene ethynylene)s (OPEs) and OPE-graphene oxide (GO) composite. OPE with cyanoacrylate terminal groups were synthesized by a Pd-catalyzed Sonogashira coupling reaction and Knoevenagel condensation for use as a chemical sensor for Cys. The optical properties and Cys sensing capability of the cyanoacrylate modified OPE and OPE–GO composite were investigated. In addition of Cys, the fluorescence of OPE was blue-shifted and decreased (fluorescence turn-off), while the fluorescence of the OPE–GO composite was enhanced (fluorescence turn-on). Thus, OPE with cyanoacrylate terminal groups and OPE–GO composite acts a highly sensitive fluorescent chemical sensor for Cys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  2. James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, Neubrander JA (2004) Metabolic biomarkers of increased oxidative stress and impaired. Am J Clin Nutr 80:1611–1617

    CAS  PubMed  Google Scholar 

  3. Chen X, Zhou Y, Peng X, Yoon J (2010) Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev 39:2120–2135

    Article  CAS  PubMed  Google Scholar 

  4. Tanaka F, Mase N, Barbas III CF (2004) Determination of cysteine concentration by fluorescence increase: reaction of cysteine with a fluorogenic aldehyde. Chem Commun: 1762-1763.

  5. Li H, Fan J, Wang J, Tian M, Du J, Sun S, Sun P, Peng X (2009) A fluorescent chemodosimeter specific for cysteine: effective discrimination of cysteine from homocysteine. Chem Commun:5904–5906

  6. Zhu B, Zhang X, Li Y, Wang P, Zhang H, Zhuang X (2010) Acolorimetric and ratiometric fluorescent probe for thiols and its bioimaging applications. Chem Commun 46:5710–5712

    Article  CAS  Google Scholar 

  7. Yang YK, Shim S, Tae J (2010) Rhodamine-sugar based turn-on fluorescent probe for the detection of cysteine and homocysteine in water. Chem Commun 46:7766–7768

    Article  CAS  Google Scholar 

  8. Yao Z, Bai H, Li C, Shi G (2011) Cokorimetric and fluorescent dual probe based on a polythiophene derivative for the detection of cysteine and homocysteine. Chem Commun 47:7431–7433

    Article  CAS  Google Scholar 

  9. Yang X, Guo Y, Strongin RM (2011) Conjugate addition/cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine. Angew Chem Int Ed 50:10690–10693

    Article  CAS  Google Scholar 

  10. Deng L, Wu W, Guo H, Zhao J, Ji S, Zhang X, Yuan X, Zhang C (2011) Colorimetric and ratiometric fluorescent chemosensor based on diketopyrrolopyrrole for selective detection of thiols: an experimental and theoretical study. J Org Chem 76:9294–9304

    Article  CAS  PubMed  Google Scholar 

  11. Lee MH, Han JH, Kwon PS, Bhuniya S, Kim JY, Sessler JL, Kang C, Kim JS (2012) Hepatocyte-targeting single galactose-appended Naphthalimide: a tool for intracellular thiol imaging in vivo. J Am Chem Soc 134:1316–1322

    Article  CAS  PubMed  Google Scholar 

  12. McMahon BK, Gunnlaugsson T (2012) Selective detection of the reduced form of glutathione (GSH) over the oxidized (GSSG) form using a combination of glutathione reductase and a Tb(III)-cyclen melaimide based lanthanide luminescent ‘switch on’ assay. J Am Chem Soc 134:10725–10728

    Article  CAS  PubMed  Google Scholar 

  13. Niu LY, Guan YS, Chen YZ, Wu LZ, Tang CH, Yang QZ (2012) BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine. J Am Chem Soc 134:18928–18931

    Article  CAS  PubMed  Google Scholar 

  14. Jung HS, Chen X, Kim JS, Yoon J (2013) Recent progress in luminescent and colorimetric chemosensors for detection of thiols. Chem Soc Rev 42:6019–6031

    Article  CAS  PubMed  Google Scholar 

  15. Cho AY, Choi K (2012) Acoumarin-based fluorescence sensor for the reversible detection of thiols. Chem Lett 41:1611–1612

    Article  CAS  Google Scholar 

  16. Skotheim TA, Reynolds J (2007) Handbook of conducting polymers, 3rd edn. CRC Press, New York

    Google Scholar 

  17. McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100:2537–2574

    Article  CAS  PubMed  Google Scholar 

  18. Thomas SW III, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386

    Article  CAS  PubMed  Google Scholar 

  19. Kim J, McQuade DT, McHugh SK, Swager TM (2000) Ion-specific aggregation in conjugated polymers: highly sensitive and selective fluorescent ion chemosensors. Angew Chem Int Ed 39:3868–3872

    Article  CAS  Google Scholar 

  20. Tan C, Atas E, Müller JG, Pinto MR, Kleiman VD, Schanze KS (2004) Amplified quenching of a conjugated polyelectrolyte by cyanine dyes. J Am Chem Soc 126:13685–13694

    Article  CAS  PubMed  Google Scholar 

  21. Fan LJ, Zhang Y, Jones WE Jr (2005) Design and synthesis of fluorescence “turn-on” chemosensors based on photoinduced electron transfer in conjugated polymers. Macromolecules 38:2844–2849

    Article  CAS  Google Scholar 

  22. Chen L, Mcbranch DW, Wang HL, Helgeson R, Wuld F, Whitten DG (1999) Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer. Proc Natl Acad Sci 96:12287–12292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang JS, Swager TM (1998) Fluorescent porous polymer films as TNT chemosensors: electronic and structural effects. J Am Chem Soc 120:11864–11873

    Article  CAS  Google Scholar 

  24. DiCesare N, Pinto MR, Schanze KS, Lakowicz JR (2002) Saccharide detection based on the amplified fluorescence quenching of a water-soluble poly(phenylene ethynylene) by a boronic acid functionalized benzyl viologen derivative. Langmuir 18:7785–7787

    Article  CAS  Google Scholar 

  25. Adachi N, Kaneko Y, Sekiguchi K, Sugiyama H, Sugeno M (2015) pH-responsive fluorescence chemical sensor constituted by conjugated polymers containing pyridine rings. Luminescence 30:1308–1312

    Article  CAS  PubMed  Google Scholar 

  26. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  CAS  PubMed  Google Scholar 

  27. Kroto HW, Heath JR, O’brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  28. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  CAS  PubMed  Google Scholar 

  29. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  CAS  PubMed  Google Scholar 

  30. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  PubMed  Google Scholar 

  31. Bernardi M, Lohrman J, Kumar PV, Kirkeminde A, Ferralis N, Grossman JC, Ren S (2012) Nanocarbon-based photovoltaics. ACS Nano 6:8896–8903

    Article  CAS  PubMed  Google Scholar 

  32. He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan C (2010) A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater 20:453–459

    Article  CAS  Google Scholar 

  33. Lomeda JR, Doyle CD, Kosynkin DV, Hwang WF, Tour JM (2008) Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J Am Chem Soc 130:16201–16206

    Article  CAS  PubMed  Google Scholar 

  34. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    Article  CAS  Google Scholar 

  35. Ran C, Wang M, Gao W, Ding J, Shi Y, Song X, Chen H, Ren Z (2012) Graphene-enriched P3HT and porphyrin-modified ZnO nanowire arrays for hybrid solar cell applications. J Phys Chem C 116:23053–23060

    Article  CAS  Google Scholar 

  36. Qi X, Pu KY, Li H, Zhou X, Wu S, Fan QL, Liu B, Boey F, Huang W, Zhang H (2010) Amphiphilic graphene composites. Angew Chem Int Ed 49:9426–9429

    Article  CAS  Google Scholar 

  37. Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor. Chem Mater 22:1392–1401

    Article  CAS  Google Scholar 

  38. Yu D, Yang Y, Durstock M, Beek JB, Dai L (2010) Soluble P3HT-graffed graphene for efficient bilayer-heterojunction photovoltaic devices. ACS Nano 4:5633–5640

    Article  CAS  PubMed  Google Scholar 

  39. Zhang J, Lei J, Pan R, Xue Y, Ju H (2010) Highly sensitive electrocatalytic biosensing of hypoxanthine based on functionalization of graphene sheets with water-soluble conjucting graft copolymer. Biosens Bioelectron 26:371–376

    Article  PubMed  Google Scholar 

  40. Gao Y, Yip HL, Che KS, O’Malley KM, Acton O, Sun Y, Ting G, Chen H, Jen AKY (2011) Surface doping of conjugated polymers by graphene oxide and its application for organic electronic devices. Adv Mater 23:1903–1908

    Article  CAS  PubMed  Google Scholar 

  41. Xing XJ, Liu XG, He Y, Lin Y, Zhang CL, Tang HW, Pang DW (2013) Amplified fluorescent sensing of DNA using graphene oxide and a conjugated cationic polymer. Biomacromolecules 14:117–123

    Article  CAS  PubMed  Google Scholar 

  42. Deng J, Liu M, Lin F, Zhang Y, Liu Y, Yao S (2013) Self-assembled oligo(phenylene ethynylene)s/graphene nanocomposite with improved electrochemical performances for dopamine determination. Anal Chim Acta 767:59–65

    Article  CAS  PubMed  Google Scholar 

  43. Sonogashira K, Tohda Y, Higashihara N (1975) A convenient synthesis of acethylenes: catalytic substitutions of acethylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett 50:4467–4470

    Article  Google Scholar 

  44. Bunz UHF (2000) Poly(aryleneethynylene)s: syntheses, properties, structures, and applications. Chem Rev 100:1605–1644

    Article  CAS  PubMed  Google Scholar 

  45. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778

    Article  CAS  Google Scholar 

  46. Zhou X, Chen Z, Qu Y, Su Q, Yang X (2013) Fabricating graphene oxide/poly(3-butylthiophene) hybrid materials with different morphologies and crystal structures. RSC Adv 3:4254–4260

    Article  CAS  Google Scholar 

  47. Li H, Powell DR, Hayashi RK, West R (1998) Poly((2,5-dialkoxy-p-phenylene)ethynylene -p-phenyleneethynylene)s and their model compounds. Macromolecules 31:52–58

    Article  CAS  Google Scholar 

  48. Kim J, Swager TW (2001) Control of conformational and interpolymer effects in conjugated polymers. Nature 411:1030–1034

    Article  CAS  PubMed  Google Scholar 

  49. James PV, Sudeep PK, Suresh CH, Tohmas KG (2006) Photophysical and theoretical investigations of oligo(p-phenyleneethynylene)s: effect of alkoxy substitution and alkyne-aryl bond rotations. J Phys Chem A 110:4329–4337

    Article  CAS  PubMed  Google Scholar 

  50. Bissell RA, de Silva AP, Gunaratne HQN, Lynch PLM, Maguire GEM, McCoy CP, Sandanayake KRAS (1993) Fluorescent PET (photoinduced electron transfer) sensors. Top Curr Chem 168:223–264

    Article  CAS  Google Scholar 

  51. Yang H, Zhang Q, Shan C, Li F, Han D, Niu L (2010) Stable, conductive supramolecular composite of graphene sheets with conjugated polyelectrolyte. Langmuir 26:6708–6712

    Article  CAS  PubMed  Google Scholar 

  52. Xing XJ, Zhou Y, Liu XG, Tang HW, Pang DW (2013) Amplified fluorescent assay of potassium ions using graphene oxide and a conjugated cataionic polymer. Analyst 138:6301–6304

    Article  CAS  PubMed  Google Scholar 

  53. Bao B, Tao N, Ma M, Zhang L, Yuwen L, Fan Q, Wang L, Huang W (2014) Fluorescence turn-on sensing of ascorbic acid based on a hyperbranched conjugated polyelectrolyte. Soft Materials 12:73–78

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Research Institute for Science and Technology of Tokyo Denki University Grant Number Q15E-04, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoya Adachi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adachi, N., Yoshinari, M., Suzuki, E. et al. Oligo(p-phenylene ethynylene) with Cyanoacrylate Terminal Groups and Graphene Composite as Fluorescent Chemical Sensor for Cysteine. J Fluoresc 27, 1449–1456 (2017). https://doi.org/10.1007/s10895-017-2084-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2084-4

Keywords

Navigation