Journal of Fluorescence

, Volume 27, Issue 4, pp 1435–1441 | Cite as

Experimental Investigations on Fluorescence Excitation and Depletion of Carbon Dots

ORIGINAL ARTICLE

Abstract

Carbon dots (CDs) can be readily synthesized and utilized as attractive fluorescent probes for a variety of applications. In this study, we have synthesized CDs using a previously published method and characterized their photo-physical properties. The resultant CDs possess prominent photo-stability and short emission wavelength in the violet region. Our study reveals that CDs, with weak photo-bleaching, enable them to be employed to achieve high spatial resolution in stimulated emission depletion (STED) microscopy. The depletion efficiency can reach 60%. More importantly, the shorter excitation wavelength of CDs contributes to further improvement of resolution for STED microscopy. An excellent candidate for fluorophores, these CDs have potential to be used in super-resolution imaging for STED microscopy.

Keywords

Carbon dots Fluorophores Stimulated emission depletion (STED) microscopy 

References

  1. 1.
    Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikrosk Anat 9(1):413–418CrossRefGoogle Scholar
  2. 2.
    Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782CrossRefPubMedGoogle Scholar
  3. 3.
    Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158CrossRefPubMedGoogle Scholar
  4. 4.
    Rankin BR, Kellner RR, Hell SW (2008) Stimulated-emission-depletion microscopy with a multicolor stimulated-Raman-scattering light source. Opt Lett 33(21):2491–2493CrossRefPubMedGoogle Scholar
  5. 5.
    Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320(5873):246–249CrossRefPubMedGoogle Scholar
  6. 6.
    Wildanger D, Rittweger E, Kastrup L, Hell SW (2008) STED microscopy with a supercontinuum laser source. Opt Express 16(13):9614–9621CrossRefPubMedGoogle Scholar
  7. 7.
    Willig KI, Harke B, Medda R, Hell SW (2007) STED microscopy with continuous wave beams. Nat Methods 4(11):915–918. doi:10.1038/nmeth1108 CrossRefPubMedGoogle Scholar
  8. 8.
    Takasaki KT, Ding JB, Sabatini BL (2013) Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. Biophys J 104(4):770–777. doi:10.1016/j.bpj.2012.12.053 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Xie H, Liu Y, Jin D, Santangelo PJ, Xi P (2013) Analytical description of high-aperture STED resolution with 0–2π vortex phase modulation. JOSA A 30(8):1640–1645CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hell SW, Dyba M, Jakobs S (2004) Concepts for nanoscale resolution in fluorescence microscopy. Curr Opin Neurobiol 14(5):599–609CrossRefPubMedGoogle Scholar
  11. 11.
    Westphal V, Hell SW (2005) Nanoscale resolution in the focal plane of an optical microscope. Phys Rev Lett 94(14):143903. doi:10.1103/PhysRevLett.94.143903 CrossRefPubMedGoogle Scholar
  12. 12.
    Wurm CA, Kolmakov K, Göttfert F, Ta H, Bossi M, Schill H, Berning S, Jakobs S, Donnert G, Belov VN (2012) Novel red fluorophores with superior performance in STED microscopy. Optical Nanoscopy 1(1):1CrossRefGoogle Scholar
  13. 13.
    Meyer L, Wildanger D, Medda R, Punge A, Rizzoli SO, Donnert G, Hell SW (2008) Dual-color STED microscopy at 30-nm focal-plane resolution. Small 4(8):1095–1100CrossRefPubMedGoogle Scholar
  14. 14.
    Punge A, Rizzoli SO, Jahn R, Wildanger JD, Meyer L, Schönle A, Kastrup L, Hell SW (2008) 3D reconstruction of high-resolution STED microscope images. Microscop research and technique 71(9):644–650CrossRefGoogle Scholar
  15. 15.
    Kellner R, Baier C, Willig K, Hell S, Barrantes F (2007) Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy. Neuroscience 144(1):135–143CrossRefPubMedGoogle Scholar
  16. 16.
    Dyba M, Keller J, Hell S (2005) Phase filter enhanced STED-4Pi fluorescence microscopy: theory and experiment. New J Phys 7(1):134CrossRefGoogle Scholar
  17. 17.
    Pan D, Zhang J, Li Z, Zhang Z, Guo L, Wu M (2011) Blue fluorescent carbon thin films fabricated from dodecylamine-capped carbon nanoparticles. J Mater Chem 21(11):3565–3567CrossRefGoogle Scholar
  18. 18.
    Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48(31):3686–3699CrossRefGoogle Scholar
  19. 19.
    da Silva JCE, Gonçalves HM (2011) Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal Chem 30(8):1327–1336CrossRefGoogle Scholar
  20. 20.
    Mewada A, Pandey S, Shinde S, Mishra N, Oza G, Thakur M, Sharon M, Sharon M (2013) Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel. Mater Sci Eng C 33(5):2914–2917CrossRefGoogle Scholar
  21. 21.
    Ghosh B, Gogoi S, Thakur S, Karak N (2016) Bio-based waterborne polyurethane/carbon dot nanocomposite as a surface coating material. Progress in Organic Coatings 90:324–330CrossRefGoogle Scholar
  22. 22.
    Bhunia SK, Nandi S, Shikler R, Jelinek R (2016) Tuneable light-emitting carbon-dot/polymer flexible films prepared through one-pot synthesis. Nano 8(6):3400–3406Google Scholar
  23. 23.
    Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49(38):6726–6744CrossRefGoogle Scholar
  24. 24.
    Leménager G, De Luca E, Sun Y-P, Pompa PP (2014) Super-resolution fluorescence imaging of biocompatible carbon dots. Nano 6(15):8617–8623Google Scholar
  25. 25.
    Hanne J, Falk HJ, Görlitz F, Hoyer P, Engelhardt J, Sahl SJ, Hell SW (2015) STED nanoscopy with fluorescent quantum dots Nature communications 6, doi:10.1038/ncomms8127
  26. 26.
    Chizhik AM, Stein S, Dekaliuk MO, Battle C, Li W, Huss A, Platen M, Schaap IA, Gregor I, Demchenko AP (2015) Super-resolution optical fluctuation bio-imaging with dual-color carbon Nanodots. Nano Lett 16(1):237–242CrossRefPubMedGoogle Scholar
  27. 27.
    Valeur B, Berberan-Santos MN (2012) Molecular fluorescence: principles and applications. John Wiley & SonsGoogle Scholar
  28. 28.
    Qu S, Wang X, Lu Q, Liu X, Wang L (2012) A biocompatible fluorescent ink based on water-soluble luminescent carbon Nanodots. Angewandte Chemie international edition 51(49):12215–12218CrossRefPubMedGoogle Scholar
  29. 29.
    Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128(24):7756–7757CrossRefPubMedGoogle Scholar
  30. 30.
    Sahu S, Behera B, Maiti TK, Mohapatra S (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun 48(70):8835–8837CrossRefGoogle Scholar
  31. 31.
    Zhang B, Cy L, Liu Y (2010) A novel one-step approach to synthesize fluorescent carbon nanoparticles. Eur J Inorg Chem 2010(28):4411–4414CrossRefGoogle Scholar
  32. 32.
    Liu Y, Xiao N, Gong N, Wang H, Shi X, Gu W, Ye L (2014) One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon 68:258–264CrossRefGoogle Scholar
  33. 33.
    Xu M, He G, Li Z, He F, Gao F, Su Y, Zhang L, Yang Z, Zhang Y (2014) A green heterogeneous synthesis of N-doped carbon dots and their photoluminescence applications in solid and aqueous states. Nano 6(17):10307–10315Google Scholar
  34. 34.
    Rittweger E, Han KY, Irvine SE, Eggeling C, Hell SW (2009) STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photonics 3(3):144–147CrossRefGoogle Scholar
  35. 35.
    Kovalenko S, Ruthmann J, Ernsting N (1997) Ultrafast strokes shift and excited-state transient absorption of coumarin 153 in solution. Chem Phys Lett 271(1):40–50CrossRefGoogle Scholar
  36. 36.
    Harke B, Keller J, Ullal CK, Westphal V, Sch A, Hell SW (2008) Resolution scaling in STED microscopy. Opt Express 16(6):4154–4162CrossRefPubMedGoogle Scholar
  37. 37.
    He X, Gao J, Gambhir SS, Cheng Z (2010) Near-infrared fluorescent nanoprobes for cancermolecular imaging: status and challenges. Trends Mol Med 16(12):574–583CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Luo D, Kuang C, Liu X, Wang G (2013) Experimental investigations on fluorescence excitation and depletion of ATTO 390 dye. Opt Laser Technol 45:723–725CrossRefGoogle Scholar
  39. 39.
    Kuang C, Wang G (2010) A novel far-field nanoscopic velocimetry for nanofluidics. Lab Chip 10(2):240–245CrossRefPubMedGoogle Scholar
  40. 40.
    Kazoe Y, Mawatari K, Sugii Y, Kitamori T (2011) Development of a measurement technique for ion distribution in an extended nanochannel by super-resolution-laser-induced fluorescence. Anal Chem 83(21):8152–8157CrossRefPubMedGoogle Scholar
  41. 41.
    Zhao W, Yang F, Khan J, Reifsnider K, Wang G (2016) Measurement of velocity fluctuations in microfluidics with simultaneously ultrahigh spatial and temporal resolution. Exp Fluids 57(1):1–12CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Biomedical Engineering Program & Department of Mechanical EngineeringUniversity of South CarolinaColumbiaUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaUSA

Personalised recommendations