Skip to main content
Log in

Triphenylbenzene Sensor for Selective Detection of Picric Acid

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A C 3-symmetric triphenylbenzene based photoluminescent compound, 1,3,5-tris(4′-(N-methylamino)phenyl) benzene ([NHMe]3TAPB), has been synthesized by mono-N-methylation of 1,3,5-tris(4′-aminophenyl) benzene (TAPB) and structurally characterized. [NHMe]3TAPB acts as a selective fluorescent sensor for picric acid (PA) with a detection limit as low as 2.25 ppm at a signal to noise ratio of 3. Other related analytes (i.e. TNT, DNT and DNB) show very little effect on the fluorescence intensity of [NHMe]3TAPB. The selectivity is triggered by proton transfer from picric acid to the fluorophore and ground-state complex formation between the protonated fluorophore and picrate anion through hydrogen bonding interactions. The fluorescence lifetime measurements reveal static nature of fluorescence quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sun X, Wang Y, Lei Y (2015) Fluorescence based explosive detection: from mechanisms to sensory materials. Chem Soc Rev 44:8019–8061

    Article  CAS  PubMed  Google Scholar 

  2. Reddy KL, Kumar AM, Dhir A, Krishnan V (2016) Selective and sensitive fluorescent detection of picric acid by new pyrene and anthracene based copper complexes. J Fluoresc 26:2041–2046

    Article  CAS  PubMed  Google Scholar 

  3. Shanmugaraju S, Mukherjee PS (2015) Self-assembled discrete molecules for sensing nitroaromatics. Chem Eur J 21:6656–6666

    Article  CAS  PubMed  Google Scholar 

  4. Kalita A, Hussain S, Malik AH, Barman U, Goswami N, Iyer PK (2016) Anion-exchange induced strong π–π interactions in single crystalline naphthalene diimide for nitroexplosive sensing: an electronic prototype for visual on-site detection. ACS Appl Mater Interfaces 8:25326–25336

    Article  CAS  PubMed  Google Scholar 

  5. Salinas Y, Martinez-Manez R, Marcos MD, Sancenon F, Costero AM, Parra M, Gil S (2012) Optical chemosensors and reagents to detect explosives. Chem Soc Rev 41:1261–1296

    Article  CAS  PubMed  Google Scholar 

  6. Durga Prasad K, Venkataramaiah N, Guru Row TN (2014) 1, 9-Pyrazoloanthrone as a colorimetric and “turn-on” fluorometric chemosensor: structural implications. Cryst Growth Des 14:2118–2122

    Article  CAS  Google Scholar 

  7. Peng Y, Zhang A-J, Dong M, Wang Y-W (2011) A colorimetric and fluorescent chemosensor for the detection of an explosive-2,4,6-trinitrophenol (TNP). Chem Commun 47:4505–4507

    Article  CAS  Google Scholar 

  8. Chopra R, Kaur P, Singh K (2015) Pyrene-based chemosensor detects picric acid upto attogram level through aggregation enhanced excimer emission. Anal Chim Acta 864:55–63

    Article  CAS  PubMed  Google Scholar 

  9. Udhayakumari D, Velmathi S, Venkatesan P, Wu S-P (2015) A pyrene-linked thiourea as a chemosensor for cations and simple fluorescent sensor for picric acid. Anal Methods 7:1161–1166

    Article  CAS  Google Scholar 

  10. Madhu S, Bandela A, Ravikanth M (2014) BODIPY based fluorescent chemodosimeter for explosive picric acid in aqueous media and rapid detection in the solid state. RSC Adv 4:7120–7123

    Article  CAS  Google Scholar 

  11. Salinas Y, Martínez-Máñez R, Jeppesen JO, Petersen LH, Sancenón F, Marcos MD, Soto J, Guillem C, Amorós P (2013) Tetrathiafulvalene-capped hybrid materials for the optical detection of explosives. ACS Appl Mater Interfaces 5:1538–1543

    Article  CAS  PubMed  Google Scholar 

  12. Kim D-S, Lynch VM, Nielsen KA, Johnsen C, Jeppesen JO, Sessler JL (2009) A chloride-anion insensitive colorimetric chemosensor for trinitrobenzene and picric acid. Anal Bioanal Chem 395:393–400

    Article  CAS  PubMed  Google Scholar 

  13. Hariharan PS, Pitchaimani J, Madhu V, Anthony SP (2016) Perylene diimide based fluorescent dyes for selective sensing of nitroaromatic compounds: selective sensing in aqueous medium across wide pH range. J Fluoresc 26:395–401

    Article  CAS  PubMed  Google Scholar 

  14. Sivaraman G, Vidya B, Chellappa D (2014) Rhodamine based selective turn-on sensing of picric acid. RSC Adv 4:30828–30831

    Article  CAS  Google Scholar 

  15. Roy B, Bar AK, Gole B, Mukherjee PS (2013) Fluorescent tris-imidazolium sensors for picric acid explosive. J Organomet Chem 78:1306–1310

    Article  CAS  Google Scholar 

  16. Mazumdar P, Maity S, Shyamal M, Das D, Sahoo GP, Misra A (2016) Proton triggered emission and selective sensing of picric acid by the fluorescent aggregates of 6,7-dimethyl-2,3-bis-(2-pyridyl)-quinoxaline. Phys Chem Chem Phys 18:7055–7067

    Article  CAS  PubMed  Google Scholar 

  17. Zwijnenburg MA, Berardo E, Peveler WJ, Jelfs KE (2016) Amine molecular cages as supramolecular fluorescent explosive sensors: a computational perspective. J Phys Chem B 120:5063–5072

    Article  CAS  PubMed  Google Scholar 

  18. Vishnoi P, Walawalkar MG, Sen S, Datta A, Patwari GN, Murugavel R (2014) Selective fluorescence sensing of polynitroaromatic explosives using triaminophenylbenzene scaffolds. Phys Chem Chem Phys 16:10651–10658

  19. Vishnoi P, Walawalkar MG, Murugavel R (2014) Containment of polynitroaromatic compounds in a hydrogen bonded Triarylbenzene host. Cryst Growth Des 14:5668–5673

  20. Vishnoi P, Sen S, Patwari GN, Murugavel R (2015) Charge transfer aided selective sensing and capture of picric acid by triphenylbenzenes. New J Chem 39:886–892

    Article  CAS  Google Scholar 

  21. Vishnoi P, Sen S, Patwari GN, Murugavel R (2016) Three-fold C 3-symmetric off-on fluorescent chemo-sensors for fluoride. J Fluoresc 26:997–1005

    Article  CAS  PubMed  Google Scholar 

  22. Liang H, Yao Z, Ge W, Qiao Y, Zhang L, Cao Z, Wu H-C (2016) Selective and sensitive detection of picric acid based on a water-soluble fluorescent probe. RSC Adv 6:38328–38331

    Article  CAS  Google Scholar 

  23. Ponnuvel K, Banuppriya G, Padmini V (2016) Highly efficient and selective detection of picric acid among other nitroaromatics by NIR fluorescent organic fluorophores. Sensors Actuators B Chem 234:34–45

    Article  CAS  Google Scholar 

  24. Bao C, Lu R, Jin M, Xue P, Tan C, Xu T, Liu G, Zhao Y (2006) Helical stacking tuned by Alkoxy side chains in π-conjugated triphenylbenzene discotic derivatives. Chem Eur J 12:3287–3294

    Article  CAS  PubMed  Google Scholar 

  25. Mukherjee TK, Datta A (2006) Regulation of the extent and dynamics of excited-state proton transfer in 2-(2′-pyridyl)benzimidazole in Nafion membranes by cation exchange. J Phys Chem B 110:2611–2617

    Article  CAS  PubMed  Google Scholar 

  26. Altomare A, Cascarano G, Giacovazzo C, Guagliardi A (1993) Completion and refinement of crystal structures with SIR92. J Appl Crystallogr 26:343–350

    Article  Google Scholar 

  27. Sheldrick G (2015) Crystal structure refinement with SHELXL. Acta Crystallogr. Sect C: Struct Chem 71:3–8

    Article  Google Scholar 

  28. Li F, Xie J, Shan H, Sun C, Chen L (2012) General and efficient method for direct N-monomethylation of aromatic primary amines with methanol. RSC Adv 2:8645–8652

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank DST/SERB, New Delhi for financial support (No. SB/S1/IC-48/2013) and SERB, New Delhi for J. C. Bose Fellowship (SB/S2/JCB-85/2014). SN thanks DST and PV thanks CSIR for research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramaswamy Murugavel.

Electronic supplementary material

ESM 1

(DOCX 1.37 mb)

NMR, mass, FT-IR, UV-Vis, additional photoluminescence spectra, Benesi-Hildebrand (B-H) plots, fluorescence quenching profiles of [NHMe]3TAPB (3) with other polynitroaromatic analytes (TNT, DNT and DNB) and crystal information file (CIF). A copy of CIF can be obtained free of charge on quoting the depository numbers CCDC 1510759–1,510,760.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagendran, S., Vishnoi, P. & Murugavel, R. Triphenylbenzene Sensor for Selective Detection of Picric Acid. J Fluoresc 27, 1299–1305 (2017). https://doi.org/10.1007/s10895-017-2063-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2063-9

Keywords

Navigation