Skip to main content
Log in

Synthesis, Spectral Characterization, SEM, Antimicrobial, Antioxidative Activity Evaluation, DNA Binding and DNA Cleavage Investigation of Transition Metal(II) Complexes Derived from a tetradentate Schiff base bearing thiophene moiety

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel series of Co(II), Ni(II), Cu(II) and Zn(II) mononuclear complexes have been synthesized involving a potentially tetradentate Schiff base ligand, which was obtained by condensation of 2-aminophenol with 2,5-thiophene-dicarboxaldehyde. The complexes were synthesized via reflux reaction of methanolic solution of the appropriate Schiff base ligand with one equivalent of corresponding metal acetate salt. Based on different techniques including micro analysis, FT-IR, NMR, UV-Vis, ESR, ESI-mass and conductivity measurements, four-coordinated geometry was assigned for all complexes. Spectroscopic data have shown that, the reported Schiff base coordinated to metal ions as a dibasic tetradentate ligand through the phenolic oxygen and the azomethine nitrogen. The antimicrobial activities of the parent ligand and its complexes were investigated by using the agar disk diffusion method. Antioxidation properties of the novel complexes were investigated and it was found that all the complexes have good radical scavenging properties. The binding of complexes to calf thymus DNA (CT-DNA) was investigated by absorption, emission and viscosity measurements. Binding studies have shown that all the complexes interacted with CT-DNA via intercalation mode and the binding affinity varies with relative order as Cu(II) complex > Co(II) complex > Zn(II) complex > Ni(II) complex. Furthermore, DNA cleavage properties of the metal complexes were also investigated. The results suggested the possible utilization of novel complexes for pharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Brodowska K, Łodyga-Chruścińska KE (2014) Schiff bases – interesting range of applications in various fields of science. Chemik 68(2):129–134

    CAS  Google Scholar 

  2. Bringmann G, Dreyer M, Faber JH, Dalsgaard PW, Staerk D, Jaroszewski JW, Ndangalasi H, Mbago F, Brun R, Christensen SB (2004) Ancistrotanzanine C and related 5, 1'- and 7, 3'-coupled naphthylisoquinoline alkaloids from Ancistrocladustanzaniensis. J Nat 67(5):743–748

    Article  CAS  Google Scholar 

  3. De Souza AO, Galetti FCS, Silva CL, Bicalho B, Parma MM, Fonseca SF (2007) Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Quim Nov. 30(7):1563–1566

  4. Das P, Linert W (2016) Schiff base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki–Miyaura reaction. Coord Chem Rev 311:1–23

    Article  CAS  Google Scholar 

  5. Wang X, Wu S, Li Z, Yang X, Su H, Hu J, Huo Q, Guan J, Kan Q (2016) Cu (II), Co (II), Fe (III) or VO (II) Schiff base complexes immobilized onto CMK-3 for styrene epoxidation. Microporous Mesoporous Mater 221:58–66

    Article  CAS  Google Scholar 

  6. Bhattacharyya A, Sen S, Harms K, Chattopadhyay S (2015) Formation of three photoluminescent zinc(II) complexes with Zn2O2 cores: examples of bi-dentate bonding modes of potentially tri- and tetra-dentate Schiff bases. Polyhedron 88:156–163

    Article  CAS  Google Scholar 

  7. Abdel Aziz AA, Badr IHA, El-Sayed ISA (2012) Synthesis, spectroscopic, photoluminescence properties and biological evaluation of novel Zn(II) and Al(III) complexes of NOON tetradentate Schiff bases. Spectrochim Acta A 97:388–396

    Article  CAS  Google Scholar 

  8. Sarıoğlu AO, Ceylan Ü, Yalçın ŞP, Sönmez M, Ceyhan G, Aygün M (2016) Synthesis of a new ONNO donor tetradentate Schiff base ligand and binuclear Cu(II) complex: quantum chemical, spectroscopic and photoluminescence investigations. J Lumin 176:193–201

    Article  Google Scholar 

  9. Kaczmarek AM, Porebski PWA, Mortier T, Lynen F, Deun RV, Hecke KV (2016) Near-infrared luminescence and RNA cleavage ability of lanthanide Schiff base complexes derived from N,N′-bis(3-methoxysalicylidene)ethylene-1,2-diamine ligands. J Inorg Biochem 163:194–205

    Article  CAS  PubMed  Google Scholar 

  10. Roy S, Chattopadhyay S (2015) Mono, di and trinuclear photo-luminescent cadmium(II) complexes with N2O and N2O2 donor salicylidimine Schiff bases: synthesis, structure and self assembly. Inorg Chim Acta 433:72–77

    Article  CAS  Google Scholar 

  11. Demir S, Jeon I, Long JR, Harris TD (2015) Radical ligand-containing single-molecule magnets. Coord Chem Rev 289-290:149–176

    Article  CAS  Google Scholar 

  12. Özdemir Ö (2016) Novel symmetric diimine-Schiff bases and asymmetric triimine-Schiff bases as chemosensors for the detection of various metal ions. J Mol Struct 1125:260–271

    Article  Google Scholar 

  13. Ajloo D, Shabanpanah S, Shafaatian B, Ghadamgahi M, Alipour Y, Lashgarbolouki T, Saboury AA (2015) Interaction of three new tetradentates Schiff bases containing N2O2 donor atoms with calf thymus DNA. Int J Biol Macromol 77:193–202

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Meng F, You C, Yang S, Xiong W, Wang Y, Su S, Zhu W (2017) Achieving NIR emission for tetradentate platinum (II) salophen complexes by attaching dual donor-accepter frameworks in the heads of salophen. Dyes Pigments 138:100–106

    Article  CAS  Google Scholar 

  15. Seoane B, Castellanos S, Dikhtiarenko A, Kapteijn F, Gascon J (2016) Multi-scale crystal engineering of metal organic frameworks. Coord Chem Rev 307:147–187

    Article  CAS  Google Scholar 

  16. Whiteoak CJ, Salassa G, Kleij AW (2012) Recent advances with π-conjugated salen systems. Chem Soc Rev 41(2):622–631

    Article  CAS  PubMed  Google Scholar 

  17. Asatkar AK, Senanayak SP, Bedi A, Panda S, Narayan KS, Zade SS (2014) Zn (II) and Cu (II) complexes of a new thiophene-based salphen-type ligand: solution-processable high-performance field-effect transistor materials. Chem Commun 50(53):7036–7039

    Article  CAS  Google Scholar 

  18. Seda SH, Abdel Aziz AA (2015) Synthesis, spectral characterization, antimicrobial, DNA binding and antioxidant studies of Co (II), Ni (II), Cu (II) and Zn (II) metal complexes of novel thiosalen analog N2S2. Eur J Chem 6(2):189–198

    Article  CAS  Google Scholar 

  19. Abdel Aziz AA, Seda SH (2015) A novel fluorescent Optode for recognition of Zn2+ ion based on NN-bis-(1-hydroxypheylimine)2,5-thiophenedicarobxaldehyde (HPTD) Schiff Base. J Fluoresc 25(6):1711–1719

    Article  CAS  PubMed  Google Scholar 

  20. Borda P (1987) Determination of Sulphur in organometallic compounds by the oxygen flask method. Anal Chim Acta 196:355–357

    Article  CAS  Google Scholar 

  21. Vogel AI (1961) A Textbook of Inorganic Quantitative Analysis.: Longmans. Green & Company, London

    Google Scholar 

  22. Earnshaw A (1968) Introduction to Magnetochemistry. Academic Press, London

    Google Scholar 

  23. Anderson NG (2012) Practical Process Research & Development - a guide for organic chemists, second edn. Academic Press, San Diego

    Google Scholar 

  24. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45(4):493–496

    CAS  PubMed  Google Scholar 

  25. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181(4617):1199–1200

    Article  CAS  Google Scholar 

  26. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3(2):208–218

    Article  CAS  Google Scholar 

  27. Tullis TF (1989) Metal-DNA chemistry, ACS symposium series, Vol. No. 402. American Chemical Society, Washington DC

    Google Scholar 

  28. Wolfe A, Shimer GH, Meehan T (1987) Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry 26(20):6392–6396

    Article  CAS  PubMed  Google Scholar 

  29. Qiu B, Guo L, Wang W, Chen G (2007) Synthesis of a novel fluorescent probe useful for DNA detection. Biosens Bioelectron 22(11):2629–2635

    Article  CAS  PubMed  Google Scholar 

  30. Geary WJ (1971) The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev 7(1):81–122

    Article  CAS  Google Scholar 

  31. Dabbagh HA, Teimouri A, Chermahini AN, Shahraki M (2008) DFT and Ab initio study of structure of dyes derived from 2-Hydroxy and 2,4-Dihydroxy benzoic acids. Spectrochim Acta A 69(2):449–459

    Article  Google Scholar 

  32. Silverstein RM, Webster FX (2003) Spectroscopic identification of organic compounds, sixth edn. John wiley & Sons Inc., New York

    Google Scholar 

  33. Manjunath M, Kulkarni AD, Bagihalli GB, Malladi S, Patil SA (2017) Bio-important antipyrine derived Schiff bases and their transition metal complexes: synthesis, spectroscopic characterization, antimicrobial, anthelmintic and DNA cleavage investigation. J Mol Struct 1127:314–321

    Article  CAS  Google Scholar 

  34. Ünver H, Boyacıoglu B, Zeyrek CT, Yıldız M, Demir N, Yıldırım N, Karaosmanoglu O, Sivas H, Elmalı A (2016) Synthesis, spectral and quantum chemical studies and use of (E)-3- [(3, 5-bis (trifluoromethyl)phenylimino)methyl]benzene-1, 2-diol and its Ni (II) and Cu (II) complexes as an anion sensor, DNA binding, DNA cleavage, anti-microbial, anti-mutagenic and anti-cancer agent. J Mol Struct 1125:162–176

    Article  Google Scholar 

  35. Nakamoto K (2009) In Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, sixth ed. John Wiley and Sons, Inc, USA

    Google Scholar 

  36. Todd JFJ (1991) Recommendations for nomenclature and symbolism for mass spectroscopy including an appendix of terms used in vacuum technology. Pure Appl Chem 63(10):1541–1566

    Article  CAS  Google Scholar 

  37. Nanjundan N, Narayanasamy R, Geib S, Velmurugan K, Nandhakumar R, Balakumaran MD, Kalaichelvan PT (2016) Distorted tetrahedral bis-(N,S) bidentate Schiff base complexes of Ni (II), Cu (II) and Zn (II): Synthesis, characterization and biological studies. Polyhedron 110:203–220

    Article  CAS  Google Scholar 

  38. Lever ABP (1971) Inorganic Electronic Spectroscopy. Elsevier, New York

    Google Scholar 

  39. Greenwood NN, Earnshaw A (1983) Chemistry of the elements, first edn. Pergamon Press, UK

    Google Scholar 

  40. Turkyilmaz M, Onder A, Baran Y (2012) Synthesis, spectroscopic, and thermal properties of some azomethine complexes of Cu (II), Ni (II), and Pt (II). J Therm Anal Calorim 109(2):991–998

    Article  CAS  Google Scholar 

  41. Figgs BN, Hitchman MA (2000) Ligand field theory and its applications. Wiley-VCH, New York

    Google Scholar 

  42. Neelakantan MA, Rusalraj F, Dharmaraja J, Johnsonraja S, Jeyakumar T, Pillai MS (2008) Spectral characterization, cyclic voltammetry, morphology, biological activitiesand DNA cleaving studies of amino acid Schiff base metal (II) complexes. Spectrochim Acta A 71:1599–1609

    Article  CAS  Google Scholar 

  43. Girichev GV, Giricheva NI, Kuzmina NP, Medvedeva YS, Rogachev AY (2008) Molecular structure of nickel (II) and copper (II) NN’-ethylene-bis (acetylacetoneiminates) MO2N2C12H18 according to gas-phase electron diffraction data and quantum-chemical calculations. J Struct Chem 49(5):837–849

    Article  CAS  Google Scholar 

  44. El-Sayed YS, Gaber M (2015) Studies on chalcone derivatives: complex formation, thermal behavior, stability constant and antioxidant activity. Spectrochim Acta A 137:423–431

    Article  CAS  Google Scholar 

  45. Kivelson D, Nieman R (1961) ESR studies on the bonding in copper complexes. J Chem Phys 35(1):149–155

    Article  CAS  Google Scholar 

  46. Hathaway BJ, Billing DE (1970) The electronic properties and stereochemistry of mono-nuclear complexes of the copper (II) ion. Coord Chem Rev 5(2):143–207

    Article  CAS  Google Scholar 

  47. Shakir M, Hanif S, Sherwani MA, Mohammad O, Al-Resayes SI (2015) Pharmacologically significant complexes of Mn (II), Co (II), Ni (II), Cu (II) and Zn (II) of novel Schiff base ligand, (E)-N-(furan-2-yl methylene) quinolin-8-amine: synthesis, spectral, XRD, SEM, antimicrobial, antioxidant and in vitro cytotoxic studies. J Mol Struct 1092:143–159

    Article  CAS  Google Scholar 

  48. Chaudhary NK, Mishra P (2014) In vitro antimicrobial screening of metal complexes of Schiff Base derived from streptomycin and amoxicillin: Synthesis, Characterization and molecular Modelling. Am J App Chem 2(1):19–26

    Article  CAS  Google Scholar 

  49. White TC, Holleman S, Dy F, Mirels LF, Stevens DA (2002) Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob Agents Chemother 46:1704–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zeglis BM, Pierre VC, Barton JK (2007) Metallo-intercalators and metallo-insertors. Chem Commun 44:4565–4569

    Article  Google Scholar 

  51. Li Y, Yang ZY, Wang MF (2009) Synthesis, characterization, DNA binding properties and antioxidant activity of Ln (III) complexes with hesperetin-4-one-(benzoyl) hydrazine. Eur J Med Chem 44(11):4585–4595

    Article  CAS  PubMed  Google Scholar 

  52. Prabhakaran R, Kalaivani P, Senthilkumar K, Natarajan K (2016) Synthesis, structural characterization, DNA/protein binding andin vitro cytotoxicity of three structurally different organorutheniummetallates from single pot. J Organomet Chem 825-826:83–99

    Article  CAS  Google Scholar 

  53. Satyanarayana S, Dabrowiak JC, Chaires JB (1993) Tris (phenanthroline)ruthenium (II) enantiomer interactions with DNA: mode and specificity of binding. Biochemistry 32(10):2573–2584

    Article  CAS  PubMed  Google Scholar 

  54. Satyanarayana S, Dabrowiak JC, Chaires JB (1992) Neither Δ- nor Λ-tris (phenanthroline) ruthenium (II) binds to DNA by classical intercalation. Biochemistry 31(39):9319–9324

    Article  CAS  PubMed  Google Scholar 

  55. Deqnah N, Yu JQ, Beale P, Fisher K, Huq F (2012) Synthesis of trans-bis-(2-hydroxypyridine) dichloroplatinum (II) and its activity in human ovarian tumour models. Anticancer Res 32(1):135–140

    CAS  PubMed  Google Scholar 

  56. Raman N, Pothiraj K, Baskaran T (2011) DNA interaction, antimicrobial, electrochemical and spectroscopic studies of metal (II) complexes with tridentate heterocyclic Schiff base derived from 2′-methylacetoacetanilide. J Mol Struct 1000(1–3):135–144

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman A. Abdel Aziz.

Electronic supplementary material

ESM 1

(DOCX 139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel Aziz, A.A., Seda, S.H. Synthesis, Spectral Characterization, SEM, Antimicrobial, Antioxidative Activity Evaluation, DNA Binding and DNA Cleavage Investigation of Transition Metal(II) Complexes Derived from a tetradentate Schiff base bearing thiophene moiety. J Fluoresc 27, 1051–1066 (2017). https://doi.org/10.1007/s10895-017-2039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2039-9

Keywords

Navigation