Skip to main content
Log in

TD-DFT Study of Absorption and Emission Spectra of 2-(2′-Aminophenyl)benzothiazole Derivatives in Water

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Reduction of aromatic azides to amines is an important property of hydrogen sulphide (H2S) which is useful in fluorescence microscopy and H2S probing in cells. The aim of this work is to study the substituent effect on the absorption and emission spectra of 2-(2′-aminophenyl)benzothiazole (APBT) in order to design APBT derivatives for the use of H2S detection. Absorption and emission spectra of APBT derivatives in aqueous environment were calculated using density functional theory (DFT) and time-dependent DFT (TD-DFT) at B3LYP/6-311+G(d,p) level. The computed results favoured the substitution of strong electron-donating group on the phenyl ring opposite to the amino group for their large Stokes’ shifts and emission wavelengths of over 600 nm. Also, three designed compounds were suggested as potential candidates for the fluorescent probes. Such generalised guideline learnt from this work can also be useful in further designs of other fluorescent probes of H2S in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang R et al (2012) Sensitive near-infrared fluorescent probes for thiols based on Se-N bond cleavage: imaging in living cells and tissues. Chem Eur J 18(36):11343–11349

    Article  CAS  PubMed  Google Scholar 

  2. Yu F, Han X, Chen L (2014) Fluorescent probes for hydrogen sulfide detection and bioimaging. Chem Commun 50(82):12234–12249

    Article  CAS  Google Scholar 

  3. Kamoun P (2004) Endogenous production of hydrogen sulfide in mammals. Amino Acids 26(3):243–254

    Article  CAS  PubMed  Google Scholar 

  4. Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16(3):1066–1071

    CAS  PubMed  Google Scholar 

  5. Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237(3):527–531

    Article  CAS  PubMed  Google Scholar 

  6. Madden JA et al (2012) Precursors and inhibitors of hydrogen sulfide synthesis affect acute hypoxic pulmonary vasoconstriction in the intact lung. J Appl Physiol 112(3):411–418

    Article  CAS  PubMed  Google Scholar 

  7. Tripatara P et al (2009) Characterisation of cystathionine gamma-lyase/hydrogen sulphide pathway in ischaemia/reperfusion injury of the mouse kidney: an in vivo study. Eur J Pharmacol 606(1–3):205–209

    Article  CAS  PubMed  Google Scholar 

  8. Wang P et al (2011) Hydrogen sulfide and asthma. Exp Physiol 96(9):847–852

    Article  CAS  PubMed  Google Scholar 

  9. Paul BD, Snyder SH (2012) H2S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13(8):499–507

    Article  CAS  PubMed  Google Scholar 

  10. Lin VS, Chang CJ (2012) Fluorescent probes for sensing and imaging biological hydrogen sulfide. Curr Opin Chem Biol 16(5–6):595–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sivakumar K et al (2004) A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes. Org Lett 6(24):4603–4606

    Article  CAS  PubMed  Google Scholar 

  12. Zhou Z, Fahrni CJ (2004) A fluorogenic probe for the copper(I)-catalyzed azide − alkyne ligation reaction: modulation of the fluorescence emission via 3(n, π*) − (π, π*) inversion. J Am Chem Soc 126(29):8862–8863

    Article  CAS  PubMed  Google Scholar 

  13. Xie F et al (2008) A fluorogenic ‘click’ reaction of azidoanthracene derivatives. Tetrahedron 64(13):2906–2914

    Article  CAS  Google Scholar 

  14. Das SK et al (2012) A small molecule two-photon probe for hydrogen sulfide in live tissues. Chem Commun 48(67):8395–8397

    Article  CAS  Google Scholar 

  15. Bailey TS, Pluth MD (2013) Chemiluminescent detection of enzymatically produced hydrogen sulfide: substrate hydrogen bonding influences selectivity for H2S over biological thiols. J Am Chem Soc 135(44):16697–16704

    Article  CAS  PubMed  Google Scholar 

  16. Wang C et al (2011) Tuning the optical properties of BODIPY dye through Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Sci China Chem 55(1):125–130

    Article  Google Scholar 

  17. Huo F-J et al (2015) Highly selective fluorescent and colorimetric probe for live-cell monitoring of sulphide based on bioorthogonal reaction. Sci Rep 5:8969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiajin Z et al (2006) Two-photon-induced excited state intramolecular proton transfer process and nonlinear optical properties of HBT in cyclohexane solution. J Opt A Pure Appl Opt 8(10):835

    Article  Google Scholar 

  19. Rodembusch FS et al (2005) The first silica aerogels fluorescent by excited state intramolecular proton transfer mechanism (ESIPT). J Mater Chem 15(15):1537–1541

    Article  CAS  Google Scholar 

  20. Wang R et al (2009) Substituent and solvent effects on excited state intramolecular proton transfer in novel 2-(2′-hydroxyphenyl)benzothiazole derivatives. J Photochem Photobiol A Chem 205(1):61–69

    Article  CAS  Google Scholar 

  21. Arthen-Engeland T et al (1992) Singlet excited-state intramolecular proton tranfer in 2-(2 t’-hydroxyphenyl) benzoxazole: spectroscopy at low temperatures, femtosecond transient absorption, and MNDO calculations. Chem Phys 163(1):43–53

    Article  CAS  Google Scholar 

  22. Das K et al (1994) Excited-state intramolecular proton transfer in 2-(2-hydroxyphenyl)benzimidazole and -benzoxazole: effect of rotamerism and hydrogen bonding. J Phys Chem 98(37):9126–9132

    Article  CAS  Google Scholar 

  23. Daengngern R, Kungwan N (2015) Electronic and photophysical properties of 2-(2′-hydroxyphenyl)benzoxazole and its derivatives enhancing in the excited-state intramolecular proton transfer processes: a TD-DFT study on substitution effect. J Lumin 167:132–139

    Article  CAS  Google Scholar 

  24. Dogra SK (2005) Spectral characteristics of 2-(3′,5′-diaminophenyl)benzothiazole: effects of solvents and acid–base concentrations. J Photochem Photobiol A Chem 172(2):185–195

    Article  CAS  Google Scholar 

  25. Dey JK, Dogra SK (1991) Solvatochromism and Prototropism in 2-(Aminophenyl)benzothiazoles. Bull Chem Soc Jpn 64(10):3142–3152

    Article  CAS  Google Scholar 

  26. Jiang Y, Wu Q, Chang X (2014) A ratiometric fluorescent probe for hydrogen sulfide imaging in living cells. Talanta 121:122–126

    Article  CAS  PubMed  Google Scholar 

  27. Zhang J, Guo W (2014) A new fluorescent probe for gasotransmitter H2S: high sensitivity, excellent selectivity, and a significant fluorescence off-on response. Chem Commun 50(32):4214–4217

    Article  CAS  Google Scholar 

  28. Becke AD (1993) A new mixing of Hartree–Fock and local density‐functional theories. J Chem Phys 98(2):1372–1377

    Article  CAS  Google Scholar 

  29. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  30. Miehlich B et al (1989) Results obtained with the correlation energy density functionals of becke and Lee Yang and Parr. Chem Phys Lett 157(3):200–206

    Article  CAS  Google Scholar 

  31. Matsuzawa NN et al (2001) Time-dependent density functional theory calculations of photoabsorption spectra in the vacuum ultraviolet region. J Phys Chem A 105(20):4953–4962

    Article  CAS  Google Scholar 

  32. Jacquemin D et al (2006) Time-dependent density functional theory investigation of the absorption, fluorescence, and phosphorescence spectra of solvated coumarins. J Chem Phys 125(16):164324

    Article  PubMed  Google Scholar 

  33. Chibani S et al (2012) On the computation of adiabatic energies in Aza-Boron-dipyrromethene dyes. J Chem Theory Comput 8(9):3303–3313

    Article  CAS  PubMed  Google Scholar 

  34. Houari Y, Jacquemin D, Laurent AD (2013) TD-DFT study of the for coumarins. Chem Phys Lett 583:218–221

    Article  CAS  Google Scholar 

  35. Zakrzewska A et al (2013) Substituent effects on the photophysical properties of fluorescent 2-benzoylmethylenequinoline difluoroboranes: a combined experimental and quantum chemical study. Dyes Pigments 99(3):957–965

    Article  CAS  Google Scholar 

  36. Laurent AD, Adamo C, Jacquemin D (2014) Dye chemistry with time-dependent density functional theory. Phys Chem Chem Phys 16(28):14334–14356

    Article  CAS  PubMed  Google Scholar 

  37. Tseng H-W et al (2015) Harnessing excited-state intramolecular proton-transfer reaction via a series of amino-type hydrogen-bonding molecules. J Phys Chem Lett 6(8):1477–1486

    Article  CAS  PubMed  Google Scholar 

  38. Chen C-L et al (2016) Insight into the amino-type excited-state intramolecular proton transfer cycle using N-tosyl derivatives of 2-(2′-Aminophenyl)benzothiazole. J Phys Chem A 120(7):1020–1028

    Article  CAS  PubMed  Google Scholar 

  39. Becke AD (1993) Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  40. Stephens PJ et al (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98(45):11623–11627

    Article  CAS  Google Scholar 

  41. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110(13):6158–6170

    Article  CAS  Google Scholar 

  42. Zhao YT, Truhlar DG (2006) Density functional for spectroscopy: No long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J Phys Chem A 110:13126–13130

    Article  CAS  PubMed  Google Scholar 

  43. O’boyle NM, Tenderholt AL, Langner KM (2007) cclib: a library, f.p.-i.c.c. algorithms. J Comput Chem 29(5):839–845

    Article  Google Scholar 

  44. Frisch MJ et al (2010) Gaussian 09 revisions C.01 & B.01. Gaussian, Inc., Wallingford

Download references

Acknowledgements

This research is financially sponsored by the Research Administration Office, Graduate School of Chiang Mai University and Thailand Research Fund (MRG5980189 and RSA5880057) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanisorn Ngaojampa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manojai, N., Daengngern, R., Kerdpol, K. et al. TD-DFT Study of Absorption and Emission Spectra of 2-(2′-Aminophenyl)benzothiazole Derivatives in Water. J Fluoresc 27, 745–754 (2017). https://doi.org/10.1007/s10895-016-2007-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-2007-9

Keywords

Navigation