Journal of Fluorescence

, Volume 27, Issue 2, pp 619–628 | Cite as

Fluorescence Quenching of Two Coumarin-3-carboxylic Acids by Trivalent Lanthanide Ions

  • Lamine Cisse
  • Abdoulaye Djande
  • Martine Capo-Chichi
  • François Delattre
  • Adama Saba
  • Jean-Claude Brochon
  • Serguei Sanouski
  • Alphonse Tine
  • Jean-Jacques Aaron
ORIGINAL ARTICLE

Abstract

The effects of various trivalent lanthanide ions (acetates of Ce3+, Er3+, Eu3+, Nd3+) on the electronic absorption and fluorescence spectra of un-substituted coumarin-3-carboxylic acid (CCA) and 7-N,N-diethylamino-coumarin-3-carboxylic acid (DECCA) have been investigated in dimethylsulfoxide (DMSO) at room temperature. Depending on the lanthanide ion nature and concentration, significant spectral changes of absorption bands occurred for both coumarin derivatives. These spectral changes were attributed to the formation of ground-state complexes between the coumarin carboxylate derivatives and lanthanide ions. The fluorescence quenching of CCA and DECCA upon increasing the lanthanide ion concentration was studied. Different quantitative treatments, including the Stern-Volmer equation, the Perrin equation and a polynomial equation, were applied and compared in order to determine the nature of the quenching mechanisms for both coumarin derivatives. The results suggested the contribution of both dynamic and static quenching. Significant differences of CCA and DECCA fluorescence quenching efficiency were also observed, depending on the lanthanide ion. DECCA fluorescence lifetime measurements, performed in the absence and in the presence of Ln3+, confirmed a contribution of static quenching.

Keywords

Coumarin-3-carboxylic acid 7-N,N-diethylamino-coumarin-3-carboxylic acid Lanthanide acetates Absorption and fluorescence spectra Fluorescence quenching 

References

  1. 1.
    O’Kennedy R, Thornes RD (1997) Coumarins: biology, applications and mode of action. Wiley & Sons, ChichesterGoogle Scholar
  2. 2.
    Sardari S, Mori Y, Horita K, Micetich RG, Nishibe S, Daneshtalab M (1999) Bioorg Med Chem 7:1933–1940CrossRefPubMedGoogle Scholar
  3. 3.
    Aaron J-J, Buna M, Parkanyi C, Antonious MS, Tine A, Cisse L (1995) J Fluoresc 5:337–347CrossRefPubMedGoogle Scholar
  4. 4.
    Parkanyi C, Maged SA, Aaron J-J, Buna M, Tine A, Cissé L (1994) Spectrosc Lett 27:439–449CrossRefGoogle Scholar
  5. 5.
    Cissé L, Tine A, Aaron J-J (1996) Bull Chem Soc Ethiop 10:33–38Google Scholar
  6. 6.
    Cissé L, Djande A, Capo-Chichi M, Delatre F, Saba A, Tine A, Aaron J-J (2011) Spectrochim Acta A 79:428–436CrossRefGoogle Scholar
  7. 7.
    Kostova IP, Manolov II, Radulova MK (2004) Acta Pharm 54:37–47PubMedGoogle Scholar
  8. 8.
    Georgieva I, Mihaylov TZ, Trendafilova N (2014) J Inorgan Biogeosciences 135:100–112Google Scholar
  9. 9.
    Kostova I, Momekov G, Tzanova T, Karaivanova M (2006) Bioinorgan Chem Appl Article ID 25651, 1–9Google Scholar
  10. 10.
    Kostova IP, Manolov I, Nicolova I, Danchev N (2001) Farmaco 56:707–713CrossRefPubMedGoogle Scholar
  11. 11.
    Bisi Castellani C, Carugo O (1989) Inorg Chim Acta 159:157–161CrossRefGoogle Scholar
  12. 12.
    Kostova I, Manolov I, Nicolova I, Konstantinov S, Karaivanova M (2001) Eur J Med Chem 36:339–347CrossRefPubMedGoogle Scholar
  13. 13.
    Issa YM, Omar MM, Sabrah BA, Mohamed SK (1992) J Indian Chem Soc 69:186–189Google Scholar
  14. 14.
    Singh HB (1980) Acta Cienc Indica [Ser] Chem 6:88–91Google Scholar
  15. 15.
    Roh S-G, Baek NS, Hong K-S, Kim HK (2004) Bull Korean Chem Soc 25:343–344CrossRefGoogle Scholar
  16. 16.
    Georgieva I, Trendafilova N, Aquino AJA, Lischka H (2007) Inorg Chem 46:10926–10936CrossRefPubMedGoogle Scholar
  17. 17.
    Kostova I, Momekov G, Stancheva P (2007) Metal-Based Drugs Article ID 15925, 8 pagesGoogle Scholar
  18. 18.
    Jiang D, Deng R, Wu J (1989) Wuji Huaxue 5:21–28Google Scholar
  19. 19.
    Deng R, Wu J, Long L (1992) Bull Soc Chim Belg 101:439–443CrossRefGoogle Scholar
  20. 20.
    Kim YH, Baek NS, Oh JB, Nah MK, Roh SG, Kwak BK, Kang MS, Kim HK (2006) Nonlinear Opt Quant Opt 35:241–254Google Scholar
  21. 21.
    Kim HK, Roh S-G, Hong K-S, Ka J-W, Baek NS, Oh JB, Nah MK, Cha YH, Ko J (2003) Macromol Res 11:133–145CrossRefGoogle Scholar
  22. 22.
    Kim HK, Oh JB, Baek NS, Roh S-G, Nah MK, Kim YH (2005) Bull Kor Chem Soc 26:201–214CrossRefGoogle Scholar
  23. 23.
    Kuriki K, Koike Y, Okamoto Y (2002) Chem Rev 102:2347–2356CrossRefPubMedGoogle Scholar
  24. 24.
    Sloff H, van Blaaderen A, Polman A, Hebbink GA, Klink SI, Van Veggel FCJM, Reinhoudt DN, Hofstraat JWJ (2002) Appl Phys 91:3955–3980CrossRefGoogle Scholar
  25. 25.
    Oyamada T, Kawamura Y, Koyama T, Sasabe H, Adachi C (2004) Adv Mater 16:1082–1086CrossRefGoogle Scholar
  26. 26.
    Nad S, Pal H (2000) J Phys Chem A 104:673–680CrossRefGoogle Scholar
  27. 27.
    Ghosh K, Adhikari S (2006) Tetrahedron Lett 47:8165–8169CrossRefGoogle Scholar
  28. 28.
    Sharma VK, Mohan D, Sahare PD (2007) Spectrochim Acta A 66:111–113CrossRefGoogle Scholar
  29. 29.
    Giri R (2004) Spectrochim Acta A 60:757–763CrossRefGoogle Scholar
  30. 30.
    Melavanki RM, Kusanur RA, Kulakarni MV, Kadadevarmath JS (2008) J Lumin 128:573–577CrossRefGoogle Scholar
  31. 31.
    Żamojć K, Wiczk W, Zaborowski B, Jacewicz DA, Chmurzyński L (2014) J Fluoresc 24:713–718CrossRefPubMedGoogle Scholar
  32. 32.
    Deprez E, Tauc P, Leh H, Mouscadet JF, Auclair C, Hawkins ME, Brochon Proc J-C (2001) Natl Acad Sci USA 98:10090CrossRefGoogle Scholar
  33. 33.
    Brochon J-C (1994) Methods Enzymol 240:262–311CrossRefPubMedGoogle Scholar
  34. 34.
    Valeur B (2001) Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim, Chap.4 CrossRefGoogle Scholar
  35. 35.
    Geddes CD, Douglas P, Moore CP, Wear TJ, Egerton PL (1999) Dyes Pigments 43:59–63CrossRefGoogle Scholar
  36. 36.
    Turro NJ (1978) Modern molecular photochemistry. Benjamin Cummings, Menlo Park, Chap.9 Google Scholar
  37. 37.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York, pp 282–286, Chap. 8 CrossRefGoogle Scholar
  38. 38.
    Adenier A, Aaron JJ (2002) Spectrochim Acta Part 58A:543–551CrossRefGoogle Scholar
  39. 39.
    Andrews DL (ed) (2009) Encyclopedia of applied spectroscopy. Wiley-VCH, Weinheim, p 492Google Scholar
  40. 40.
    Anantharaman V, Chrysochoos J (1983) J Less-Common Met 93:59–66CrossRefGoogle Scholar
  41. 41.
    Tine A, Valat P, Aaron JJ (1986) J Lumin 36:109–113CrossRefGoogle Scholar
  42. 42.
    Gaye-Seye MD, Aaron JJ (1999) Biomed Chromatogr 13:171–172CrossRefGoogle Scholar
  43. 43.
    Adenier A, Duville F, Aaron JJ (1998) Proc Indian Acad Sci (Chem Sci) 110:311–317Google Scholar
  44. 44.
    Ricci RW, Kilichowski KB (1974) J Phys Chem 78:1953–1956CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Lamine Cisse
    • 1
  • Abdoulaye Djande
    • 2
  • Martine Capo-Chichi
    • 3
  • François Delattre
    • 4
  • Adama Saba
    • 2
  • Jean-Claude Brochon
    • 5
  • Serguei Sanouski
    • 5
  • Alphonse Tine
    • 1
  • Jean-Jacques Aaron
    • 6
  1. 1.Laboratoire de Photochimie et d’Analyse, Faculté des Sciences et TechniquesUniversité Cheikh Anta DIOPDakarFrance
  2. 2.Laboratoire de Chimie Moléculaire et de Matériaux Equipe de Chimie Organique et de PhytochimieUniversité Ouaga 1Pr Joseph Ki-ZerboOuaga dougouBurkina Faso
  3. 3.Laboratoire de Physique des Matériaux Divisés et Interfaces, CNRS-UMR 810Université Paris-Est Marne-la-ValléeMarne-la-Vallée Cedex 2France
  4. 4.Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) ULCODunkerqueFrance
  5. 5.Laboratoire de Biologie et de Pharmacologie Appliquée, CNRS-UMR 8113, ENS CachanCachanFrance
  6. 6.Laboratoire Géomatériaux et Environnement (LGE)Université Paris-Est Marne-la-ValléeMarne-la-Vallée Cedex 2France

Personalised recommendations