Skip to main content
Log in

“Turn-Off-On” Fluorescence Switching of Ascorbic Acid-Reductive Silver Nanoclusters: a Sensor for Ascorbic Acid and Arginine in Biological Fluids

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this report, a novel one-step chemical reduction method was reported for synthesis of water-soluble and stable fluorescent glutathione-templated silver nanocluster (GSH-Ag NCs) with ascorbic acid as an environmental-friendly reducing agent. On the basis of an oxidoreduction-induced fluorescence quenching mechanism, the prepared GSH-Ag NCs found to act as a cheap, non-toxic and highly sensitive “turn-off” fluorophore for ascorbic acid (AA). Furthermore, the fluorescence of the fluorophore/AA system could be recovered through addition of arginine (Arg), which made the system function as a highly selective “turn-on” sensor for arginine. Therefore, a “turn-off-on” switch sensor was proposed for detection of AA and Arg. Under optimized conditions, the probe gives a fluorescent response that is linear in the 2–300 μM concentration range of AA, with a detection limit of 0.1 μM. The probe for Arg, in turn, has a linear range in the 10–180 μM concentration range, and the limit of detection is 0.5 μM. In addition, the developed method showed great accuracy when employed to detect AA and Arg in human urine and serum, which shows its great potential in biological molecular recognition applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O’Connell PJ, Gormally C, Pravda M, Guilbault GG (2001) Development of an amper-ometric L-ascorbic acid (vitamin C) sensor based on electropolymerised anilinefor pharmaceutical and food analysis. Anal Chim Acta 431:239–247

    Article  Google Scholar 

  2. Zhang L, Cai H, Zhou C et al (2015) Facile and fast fabrication of polyaniline nanorods on acidized titanium foils with a synergistic effect for electrochemical sensing. J Mater Chem B 3(44):8629–8637

    Article  CAS  Google Scholar 

  3. Johnston CS, Steinberg FM, Rucker RB et al (2001) Ascorbic acid

  4. Gopalakrishnan V, Burton PJ, Blaschke TF (1996) High-performance liquid chromatographic assay for the quantitation of L-arginine in human plasma. Anal Chem 68:3520–3523

    Article  CAS  PubMed  Google Scholar 

  5. Wu GY, Morris SM, Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vishwanathan K, Tackett RL, Stewart JT et al (2000) Determination of arginine and methylated arginines in human plasma by liquid chromatography-tandem mass spectrometry. J Chromatogr B 748:157–166

    Article  CAS  Google Scholar 

  7. Stechmiller JK, Childress B, Cowan L (2005) Arginine supplementation and wound healing. Nutr Clin Pract 20:52–61

    Article  PubMed  Google Scholar 

  8. Zhou X, Jin X, Li D et al (2011) Selective detection of zwitterionic arginine with a new Zn (II)-terpyridine complex: potential application in protein labeling and determination. Chem Commun 47:3921–3923

    Article  CAS  Google Scholar 

  9. Li J, Zhu JJ, Xu K (2014) Fluorescent metal nanoclusters: from synthesis to applications. Tr Anal Chem 58:90–98

    Article  CAS  Google Scholar 

  10. Shiang YC, Huang CC, Chen WY et al (2012) Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging. J Mater Chem 22:12972–12982

    Article  CAS  Google Scholar 

  11. Risse T, Shaikhutdinov S, Nilius N et al (2008) Gold supported on thin oxide films: from single atoms to nanoparticles. Accounts Chem Res 41:949–956

    Article  CAS  Google Scholar 

  12. Shang L, Dong S, Nienhaus GU (2011) Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6:401–418

    Article  CAS  Google Scholar 

  13. Zheng J, Zhang C, Dickson RM (2004) Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett 93:077402

    Article  PubMed  Google Scholar 

  14. Yan Z, Hui FQ, Anindita DAS et al (2011) Comparison of the catalytic properties of 25 atom gold nanospheres and nanorods. Chinese J Catal 32:1149–1155

    Article  Google Scholar 

  15. Yu Y, Luo Z, Chevrier DM et al (2014) Identification of a highly luminescent Au22(SG)18 nanocluster. J Am Chem Soc 136:1246–1249

    Article  CAS  PubMed  Google Scholar 

  16. Yuan X, Setyawati MI, Xie JP et al (2013) Highly luminescent silver nanoclusters with tunable emissions: cyclic reduction–decomposition synthesis and antimicrobial properties. NPG Asia Mater 5:e39

    Article  CAS  Google Scholar 

  17. Huang S, Pfeiffer C, Hollmann J, Friede S, Chen JJ (2012) Synthesis and characterization of colloidal fluorescent silver nanoclusters. Langmuir 28:8915–8919

    Article  CAS  PubMed  Google Scholar 

  18. Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33:27–36

    Article  CAS  PubMed  Google Scholar 

  19. Templeton AC, Chen S, SMG et al (1998) Water-soluble, isolable gold clusters protected by tiopronin and coenzyme a monolayers. Langmuir 15:66–76

    Article  Google Scholar 

  20. Wuelfing WP, Zamborini FP, Templeton AC et al (2000) Monolayer-protected clusters: molecular precursors to metal films. Chem Mater 13:87–95

    Article  Google Scholar 

  21. Negishi Y, Takasugi Y, Sato S et al (2004) Magic-numbered Au(n) clusters protected by glutathione monolayers (n = 18, 21, 25, 28, 32, 39): isolation and spectroscopic characterization. J American Chem Soc 126:6518–6529

    Article  CAS  Google Scholar 

  22. Negishi Y, Nobusada K, Tsukuda T (2005) Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J American Chem Soc 127:5261–5270

    Article  CAS  Google Scholar 

  23. Jin R (2010) Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2:343–362

    Article  CAS  PubMed  Google Scholar 

  24. Mathew A, Sajanlal PR, Pradeep T (2011) A fifteen atom silver cluster confined in bovine serum albumin. J Mater Chem 21:11205–11212

    Article  CAS  Google Scholar 

  25. Zheng KY, Yuan X, Xie JP (2014) Recent advances in synthesis, characterization, and biomedical application of ultrasmall thiolated silver nanoclusters. RSC Adv 4:60581–60596

    Article  CAS  Google Scholar 

  26. Liu T, Su Y, Song H et al (2013) Microwave-assisted green synthesis of ultrasmall fluorescent water-soluble silver nanoclusters and its application in chiral recognition of amino acids. Analyst 138:6558–6564

    Article  CAS  PubMed  Google Scholar 

  27. Xu HX, Suslick KS (2010) Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano 4:3209–3214

    Article  CAS  PubMed  Google Scholar 

  28. Zhang N, Qu F, Luo HQ et al (2013) Sensitive and selective detection of biothiols based on target-induced agglomeration of silvernanoclusters. Biosens and Bioelectron 42:214–218

    Article  CAS  Google Scholar 

  29. Yuan X, Luo Z, Zhang Q et al (2011) Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano 5:8800–8808

    Article  CAS  PubMed  Google Scholar 

  30. Yang XH, Ling J, Peng J et al (2013) Catalytic formation of silver nanoparticles by bovine serum albumin protected-silver nanoclusters and its application for colorimetric detection of ascorbic acid. Spectrochim Acta A 106:224–230

    Article  CAS  Google Scholar 

  31. Pandey I, Jha SS (2015) Molecularly imprinted polyaniline-ferrocene-sulfonic acid-carbon dots modified pencil graphite electrodes for chiral selective sensing of D-ascorbic acid and L-ascorbic acid: a clinical biomarker for preeclampsia. Electrochim Acta 182:917–928

    Article  CAS  Google Scholar 

  32. Wu T, Guan Y, Ye J (2007) Determination of flavonoids and ascorbic acid in grapefruit peel and juice by capillary electrophoresis with electrochemical detection. Food Chem 100:1573–1579

    Article  CAS  Google Scholar 

  33. Chen H, Li W, Zhao P et al (2015) A CdTe/CdS quantum dots amplified graphene quantum dots anodic electrochemiluminescence platform and the application for ascorbic acid detection in fruits. Electrochim Acta 178:407–413

    Article  CAS  Google Scholar 

  34. Abdelwahab AA, Shim YB (2015) Simultaneous determination of ascorbic acid, dopamine, uric acid and folic acid based on activated graphene/MWCNT nanocomposite loaded Au nanoclusters. Sensor Actuat B-Chem 221:659–665

    Article  CAS  Google Scholar 

  35. Peng J, Ling J, Zhang XQ et al (2015) A rapid, sensitive and selective colorimetric method for detection of ascorbic acid. Sensor Actuat B-Chem 221:708–716

    Article  CAS  Google Scholar 

  36. Ferreira DCM, Giordano GF, Mendes RK et al (2015) Optical paper-based sensor for ascorbic acid quantification using silver nanoparticles. Talanta 141:188–194

    Article  CAS  PubMed  Google Scholar 

  37. Cen Y, Tang J, Kong XJ et al (2015) A cobalt oxyhydroxide-modified upconversion nanosystem for sensitive fluorescence sensing of ascorbic acid in human plasma. Nanoscale 7:13951–13957

    Article  CAS  PubMed  Google Scholar 

  38. Liu JJ, Chen ZT, Tang DS et al (2015) Graphene quantum dots-based fluorescent probe for turn-on sensing of ascorbic acid. Sensor Actuat B-Chem 212:214–219

    Article  CAS  Google Scholar 

  39. Stechmiller JK, Childress B, Cowan L (2015) Arginine supplementation and wound healing. Nutr Clin Pract 20:52–61

    Article  Google Scholar 

  40. Wang X, Wu P, Hou X, et al (2013) An ascorbic acid sensor based on protein-modified Au nanoclusters. Analyst 138:229–233

  41. Hu L, Deng L, Alsaiari S et al (2014) “light-on” sensing of antioxidants using gold nanoclusters. Analyt Chem 86:4989–4994

    Article  CAS  Google Scholar 

  42. Cao J, Ding L, Hu W et al (2014) Ternary system based on fluorophore-surfactant assemblies-Cu2+ for highly sensitive and selective detection of arginine in aqueous solution. Langmuir 30:15364–15372

    Article  CAS  PubMed  Google Scholar 

  43. He L, So VLL, Xin JH (2014) A new rhodamine-thiourea/Al 3+, complex sensor for the fast visual detection of arginine in aqueous media. Sensor Actuat B-Chem 192:496–502

    Article  CAS  Google Scholar 

  44. Zhou X, Jin X, Li D et al (2011) Selective detection of zwitterionic arginine with a new Zn(II)-terpyridine complex: potential application in protein labeling and determination. Chem Commun 47:3921–3929

    Article  CAS  Google Scholar 

  45. Wei YK, Yang J (2007) Evanescent wave infrared chemical sensor possessing a sulfonated sensing phase for the selective detection of arginine in biological fluids. Talanta 71:2007–2014

    Article  CAS  PubMed  Google Scholar 

  46. Ren HB, Yan XP (2012) Ultrasonic assisted synthesis of adenosine triphosphate capped manganese-doped ZnS quantum dots for selective room temperature phosphorescence detection of arginine and methylated arginine in urine based on supramolecular Mg2+-adenosine triphosphate. Talanta 97:16–22

    Article  CAS  PubMed  Google Scholar 

  47. Pu W, Zhao H, Huang C et al (2013) Visual detection of arginine based on the unique guanidino group-induced aggregation of gold nanoparticles. Anal Chim Acta 764:78–83

    Article  CAS  PubMed  Google Scholar 

  48. Wehner M, Schrader T, Finocchiaro P et al (2000) A chiral sensor for arginine and lysine. Org Lett 2:605–608

    Article  CAS  PubMed  Google Scholar 

  49. Hassen WM, Martelet C, Davis F et al (2006) Calix[4] arene based molecules for amino-acid detection. Sensor Actuat B-Chem 124:38–45

    Article  Google Scholar 

  50. Kenneth S, Hugo S, Peter S (1987) Förster transfer calculations based on crystal structure data from Agmenellum quadruplicatum C-phycocyanin. Photochem Photobiol 46:427–440

    Article  Google Scholar 

  51. Lakowicz JR, Weber G (1973) Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry 12:4171–4179

    Article  CAS  PubMed  Google Scholar 

  52. Jones RM, Bergstedt TS, McBranch DW (2001) Tuning of superquenching in layered and mixed fluorescent polyelectrolytes. J American Chem Soc 123:6726–6727

    Article  CAS  Google Scholar 

  53. Murphy CB, Zhang Y, Troxler T (2004) Probing Förster and Dexter energy-transfer mechanisms in fluorescent conjugated polymer chemosensors. J Phys Chem B 108:1537–1543

    Article  CAS  Google Scholar 

  54. Baptista MS, Indig GL (1998) Effect of BSA binding on photophysical and photochemical properties of triarylmethane dyes. J Phys Chem B 102:4678–4688

    Article  CAS  Google Scholar 

  55. Lakowicz JR (1983) Introduction to fluorescence. Springer, US

    Book  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Hubei Province (2015CFB273, 2011CDB059 and 2011CDA111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., He, Y., Ge, Y. et al. “Turn-Off-On” Fluorescence Switching of Ascorbic Acid-Reductive Silver Nanoclusters: a Sensor for Ascorbic Acid and Arginine in Biological Fluids. J Fluoresc 27, 293–302 (2017). https://doi.org/10.1007/s10895-016-1957-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1957-2

Keywords

Navigation