Skip to main content
Log in

Colorimetric Fluorescent Sensors for Hemoglobin Based on BODIPY Dyes

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Colorimetric fluorescent chemosensors 4 and 5 based on mono- and di- styryl borondipyrromethenes (BODIPY) linked methyl malonyl were designed for detection of hemoglobin (HgB). Their sensing behavior toward various analytes (Br, EDTA, Glucose, CO3 2−, Fe2+, Fe3+, I, NO3 , PO4 3−, SO4 2−,Cl, Urea, K+, Mg2+, Na+, NH4 +, Zn2+,Ca2+,Cd2+, Li+, Pb2+, Cs2+, Ag+, Mn2+, Cr2+, Ni2+, Hg2+, Al3+) were investigated by fluorescence spectroscopies. Addition of HgB to acetone: water (4:1) solutions of BODIPYs 4 and 5 solutions gave visual color changes, as well as significantly quenched fluorescence emissions, while other analytes induced no or much smaller spectral changes. The sensing method for both BODIPYs 4 and 5 was successfully applied to measure the HgB in human blood with satisfactory results. Spike and recovery tests in human blood samples exhibit good recovery rates for the spiked concentrations close to the limit of detection. It was found that BODIPYs 4 and 5 constituted the HgB selective fluorescent chemosensor (ON-OFF) and the detection limits were calculated to be 1.773 μg. mL−1 and 1. 295 μg.mL−1 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yongqin L, Tianwei T, Frantisek S (2013) Molecular imprinting of proteins in polymers attached to the surface of nanomaterials for selective recognition of biomacromolecules. Biotechnol Adv 31:1172–1186

    Article  Google Scholar 

  2. Whitcombe M (2011) Molecularly imprinted polymers: smart hydrogel crystal gardens. J Nature Chem 3:657–658

    Article  CAS  Google Scholar 

  3. Thobhani S, Attree S, Boyd R, Kumarswami N, Noble J, Szymanski M (2010) Bioconjugation and characterisation of gold colloid-labelled proteins. J Immunol Methods 356:60–69

    Article  CAS  PubMed  Google Scholar 

  4. Yangs KG, Zhang LH, Liang Z, Zhang YK (2012) Protein-imprinted materials: rational design, application and challenges. Anal Bioanal Chem 403:2173–2183

    Article  Google Scholar 

  5. Yang XF, Guo XQ, Li H (2003) Fluorimetric determination of hemoglobin using spiro form rhodamine B hydrazide in a micellar medium. Talanta 61:439–445

    Article  CAS  PubMed  Google Scholar 

  6. Kim DS, Choi JH, Nam MH, Yang JW, Pak JJ, Seo S (2011) LED and CMOS image sensor based hemoglobin concentration measurement technique. Sensors Actuators B 157:103–109

    Article  CAS  Google Scholar 

  7. Houjuan Z, Suhua W (2013) Sensitive detection of trace hemoglobin using fluorescence method based on functionalized quantum dots. Anal Bioanal Chem 405:4989–4991

    Article  Google Scholar 

  8. Hsieh MS, Wu TG, Su CS, Chen WJ, Ozbek N, Tsai KY, Lin CY (2011) Comparison of an electrochemical biosensor with optical devices for hemoglobin measurement in human whole blood samples. Clin Chim Acta 412:2150–2156

    Article  CAS  PubMed  Google Scholar 

  9. Tatikonda AK, Tkachev M, Naaman R (2013) A highly sensitive hybrid organic–inorganic sensor for continuous monitoring of hemoglobin. Biosens Bioelectron 45:201–205

    Article  CAS  PubMed  Google Scholar 

  10. Frenchik MD, McFaul SJ, Tsonev LI (2004) A microplate assay for the determination of hemoglobin concentration. Clin Chim Acta 339:199–201

    Article  CAS  PubMed  Google Scholar 

  11. Mieczkowska RK, Tymecki L (2011) Hemoglobin determination with paired emitter detector diode. Anal Bioanal Chem 399:3293–3297

    Article  CAS  PubMed  Google Scholar 

  12. Van Bommel MR, De Jong APJM, Tjaden UR, Irth H, Van der Greef J (2000) High-performance liquid chromatography coupled to enzyme-amplified biochemical detection for the analysis of hemoglobin after pre-column biotinylation. J Chromatogr A 886:19–29

    Article  CAS  PubMed  Google Scholar 

  13. Quickenden TI, Cooper PD (2001) Increasing the specificity of the forensic luminol test for blood. Luminescence 16:251–253

    Article  CAS  PubMed  Google Scholar 

  14. Benstead M, Mehl GH, Boyle RW (2011) 4, 4′-difluoro-4-bora-3a, 4a-diaza-s-indacenes (BODIPYs) as components of novel light active materials. Tetrahedron 67:3573–3601

    Article  CAS  Google Scholar 

  15. Mohammed AH, Alamiry A, Mallon LJ, Ulrich G, Ziessel R (2008) Energy- and Charge-Transfer Processes in a Perylene–BODIPY–Pyridine Tripartite Array. Eur J Org Chem 16:2774–2782

    Google Scholar 

  16. Thoresen LH, Kim H, Welch MB, Burghart A, Burgess K (1998) Synthesis of 3, 5-Diaryl-4, 4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY®) dyes. Synlett 11:1276–1278

    Article  Google Scholar 

  17. Rurack K, Kollmannsberger M, Daub J (2001) A highly efficient sensor molecule emitting in the near infrared (NIR): 3, 5-distyryl-8-(p-dimethylaminophenyl)difluoroboradiaza-s-indacene. New J Chem 25:289–292

    Article  CAS  Google Scholar 

  18. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932

    Article  CAS  PubMed  Google Scholar 

  19. Sengul IF, Okutan E, Kandemir H, Astarcı E, Çoşut B (2015) Carbazole substituted BODIPY dyes: synthesis, photophysical properties and antitumor activity. Dyes Pigments 123:32–38

    Article  CAS  Google Scholar 

  20. Yee MC, Fas SC, Stohlmeyer MM, Wandless TJ, Cimprich KA (2005) A cell-permeable, activity-based probe for protein and lipid kinases. J Biol Chem 280:29053–29059

    Article  CAS  PubMed  Google Scholar 

  21. Golovkova TA, Kozlov DV, Neckers DC (2005) Synthesis and properties of novel fluorescent switches. J Org Chem 70:5545–5549

    Article  CAS  PubMed  Google Scholar 

  22. Trieflinger C, Rurack K, Daub J (2005) Turn ON/OFF your LOV light”: Borondipyrromethene–Flavin dyads as biomimetic switches derived from the LOV domain. Angew Chem Int Ed 44:2288–2291

    Article  CAS  Google Scholar 

  23. Turfan B, Akkaya EU (2002) Modulation of Boradiazaindacene emission by cation mediated oxidative PET. Org Lett 4:2857–2859

    Article  CAS  PubMed  Google Scholar 

  24. Rurack K, Kollmannsberger M, Resch-Genger U, Daub J (2000) A selective and sensitive Fluoroionophore for HgII, AgI, and CuII with virtually decoupled fluorophore and receptor units. J Am Chem Soc 122:968–969

    Article  CAS  Google Scholar 

  25. Arbeloa TL, Arbeloa FL, Arbeloa IL, Garcia-Moreno I, Costela A, Sastre R, Amat-Guerri F (1999) Correlations between photophysics and lasing properties of dipyrromethene–BF2 dyes in solution. Chem Phys Lett 299:315–321

    Article  CAS  Google Scholar 

  26. Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Educ 76:1260

    Article  CAS  Google Scholar 

  27. Magde D, Rojas GE, Seybold P (1999) Solvent dependence of the fluorescence lifetimes of xanthene dyes. Photochem Photobiol 70:737–744

    Article  CAS  Google Scholar 

  28. Jacques P, Braun AM (1981) Laser flash photolysis of Phthalocyanines in solution and Microemulsion. Helv Chim Acta 64:1800–1806

    Article  CAS  Google Scholar 

  29. Rose J (1964) Advanced Physico- chemical Experiments. Sir Isaac Pitman & Sons Ltd, London, p. 257

    Google Scholar 

  30. Tümay SO, Okutan E, Sengul IF, Özcan E, Kandemir H, Doruk T, Çetin M, Çoşut B (2016) Naked-eye fluorescent sensor for Cu (II) based on indole conjugate BODIPY dye. Polyhedron 117:161–171

    Article  Google Scholar 

  31. Bartelmess J, Weare WW (2013) Preparation and characterization of multi-cationic BODIPYs and their synthetically versatile precursors. Dyes Pigments 97:1–8

    Article  CAS  Google Scholar 

  32. Ali F, Anila HA, Taye N, Gonnade GR, Chattopadhyay S, Das A (2015) A fluorescent probe for specific detection of cysteine in the lipid dense region of cells. Chem Commun 51:16932–16935

    Article  CAS  Google Scholar 

  33. Kobayashi T, Komatsu T, Kamiya M, Campos C, González-Gaitán M, Terai T, Hanaoka K, Nagano T, Urano Y (2012) Highly Activatable and environment-insensitive optical highlighters for selective spatiotemporal imaging of target proteins. J Am Chem Soc 134:11153–11160

    Article  CAS  PubMed  Google Scholar 

  34. Boens N, Leen V, Dehaen W (2012) Fluorescent indicators based on BODIPY. Chem Soc Rev 41:1130–1172

    Article  CAS  PubMed  Google Scholar 

  35. Maver U, Znidarsic A, Gaberscek M (2011) An attempt to use atomic force microscopy for determination of bond type in lithium battery electrodes. J Mater Chem 21:4071–4075

    Article  CAS  Google Scholar 

  36. Pourreza N, Golmohammadi H (2015) Hemoglobin detection using curcumin nanoparticles as a colorimetric chemosensor. RSC Adv 5:1712–1717

    Article  CAS  Google Scholar 

  37. Murale DP, Manjare ST, Lee YS, Churchill DG (2014) Fluorescence probing of the ferric Fenton reaction via novel chelation. Chem Commun 50:359–361

    Article  CAS  Google Scholar 

  38. Carter KP, Young AM, Palmer AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114:4564–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ulrich G, Ziessel R, Harriman A (2008) The chemistry of fluorescent Bodipy dyes: versatility unsurpassed. Angew Chem Int Ed 47:1184–1201

    Article  CAS  Google Scholar 

  40. Shan H, Wang L, Huang C, Xie J, Su W, Sheng J, Xiao Q (2015) A carbon dots based fluorescent probe for selective and sensitive detection of hemoglobin. Sensors Actuators B 221:1215

    Article  Google Scholar 

  41. Lakowicz JR (2006) Principles of Fluorescence. Spectroscopy, 3rd edn. Springer, Singapore, pp. 280–282

    Book  Google Scholar 

Download references

Acknowledgments

The authors wish to thank to M. HATİPOĞLU, MD, for providing blood samples and clinical results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Okutan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okutan, E., Tümay, S.O. & Yeşilot, S. Colorimetric Fluorescent Sensors for Hemoglobin Based on BODIPY Dyes. J Fluoresc 26, 2333–2343 (2016). https://doi.org/10.1007/s10895-016-1929-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1929-6

Keywords

Navigation