Skip to main content
Log in

Redox and Organic Post-Annealing Chemical Processes Impacting the Fluorescence of N V Centers into Nanodiamonds

A Competitive Process Between Exfoliation and Functionalisation

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Among the several aspects involved into the synthesis of monocharged nitrogene-vacancy N V colored centers produced into nanodiamonds ND, the post-annealing cleaning process, such as sulfo-nitric acid cleaning or thermal oxidation under acid conditions, can be seen as a factor impacting the optical response of these N V colored centers. A significative difference of optical response is in fact noticed modifying the post-annealing treatment conditions, between a pure oxidative treatment at room temperature and a mixed-process including oxidation and thermal activation. Specific chemical processes and surface chemical aspects are proposed to explain the optical signals obtained by fluorescence. Some chemical pathways are then found more efficient than others to limit the fluorescence quenching of these colored N V emitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Doherty MW, Manson NB, Delaney P, Jelezko F, Wrachtrup J, Hollenberg LCL (2013) Phys Rep 528(1):01–45

    Article  CAS  Google Scholar 

  2. Kaiser W, Bond WL (1959) Phys. Rev 115

  3. Smith WV, Sorokin PP, Gelles IL, Lasher GJ (1959) Phys Rev 115

  4. Boudou JP, Tisler J, Reuter R, Thorel A, Curmi PA, Jelezko F, Wrachtrup J (2013) Diam Relat Mater 37:80–86

    Article  CAS  Google Scholar 

  5. Boudou JP, Curmi PA, Jelezko F, Wrachtrup J, Aubert P, Sennour M, Balasubramanian G, Reuter R, Thorel A, Gaffet E (2009) Nanotech 20:235602

    Article  Google Scholar 

  6. Dannefaer S, Pu A, Avalos V, Kerr D (2001) Physica B 308-310:569–572

    Article  CAS  Google Scholar 

  7. Taylor JM et al (2008) Nat Phys 4:810

    Article  CAS  Google Scholar 

  8. Acosta VM et al (2009) Phys Rev B 80:115202

    Article  Google Scholar 

  9. Mochalin V, Shenderova O, Ho D, Gogotsi Y (2011) Nat Nanotech 7:11–23

    Article  Google Scholar 

  10. Jarmola A, Acosta VM, Jensen K, Chemerisov S, Budker D (2012) Phys Rev Lett 108:197601

    Article  CAS  PubMed  Google Scholar 

  11. Jansen K et al (2012)

  12. Balasubramanian G, Chan IY, Kolesov R, Al Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer PR, Krueger A, Hnake T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J (2008) Nature 455:648

    Article  CAS  PubMed  Google Scholar 

  13. Maze JR, Stanwix PL, Hodges JS, Hong S, Taylor JM, Cappellaro P, Jiang L, Dutt MVG, Togan E, Zibrov AS, Yakoby A, Walsworth RL, Lukin MD (2008) Nature 455:644

    Article  CAS  PubMed  Google Scholar 

  14. Muret P, Volpe PN, Tran-Thi TN, Pernot J, Hoarau C, Omnes F, Teraji. T (2011) Diam Rel Mat 20:285

    Article  CAS  Google Scholar 

  15. Achard J et al (2011) Diam Rel Mat 20:145

    Article  CAS  Google Scholar 

  16. Lee KC et al (2011) Science 334:1253

    Article  CAS  PubMed  Google Scholar 

  17. Glover TE et al (2012) Nature 488:603

    Article  CAS  PubMed  Google Scholar 

  18. Yu S-J, Kang M-W, Chang H-C, Chen K-M, Yu Y-C (2005) J Am Chem Sc 127:17604–17605

    Article  CAS  Google Scholar 

  19. Baranov PG, Soltamova AA, Tolmachev DO, Romanov NG, Babunts RA, Shakhov FM, Kidalov SV, Vul AY, Mamin GV, Orlinskii SB, Silkin NI (2011) Small 7(11):1533–1537

    Article  CAS  PubMed  Google Scholar 

  20. Schirhagl R, Chang K, Loretz M, Degen CL (2014) Ann Rev Phys Chem 65(1):83–105

    Article  CAS  Google Scholar 

  21. Bonnauron M, Saada S, Rousseau L, Lissorgues G, Mer C, Bergonzo P (2008) Diam Rel Mat 17:1399

    Article  CAS  Google Scholar 

  22. Hadjinicolaou AE et al (2012) Biomaterials 33:5812

    Article  CAS  PubMed  Google Scholar 

  23. Bertrand J-R, Pioche-Durieu C, Ayala J, Petit T, Girard HA, Malvy CP, Le Cam E, Treussart F, Arnault J-C (2015) Biomaterials 45:93–98

    Article  CAS  PubMed  Google Scholar 

  24. Slegerova J, Rehor I, Havlik J, Raabova H, Muchova E, Cigler P (2014). In: Drake GWF (ed) Intracellular delivery II, vol 7. Dordrecht: Springer, Netherlands, pp 363–401

  25. Jitka S, Miroslav H, Ivan R, Frantisek S, Jan S, Martin H, Petr C (2015) Nanoscale 7 (2):415–420

    Article  Google Scholar 

  26. Vaijayanthimala V, Chang HC (2009) Nanomedecine 4:47

    Article  CAS  Google Scholar 

  27. Perevedentseva E, Lin Y-C, Jani M, Cheng C-L (2013) Nanomedicine 8:2041–60

    Article  CAS  PubMed  Google Scholar 

  28. Smith AH, Robinson EM, Zhang X-Q, Chow EK, Lin Y, Osawa E (2011) Nanoscale 3:2844–8

    Article  CAS  PubMed  Google Scholar 

  29. Gismondi A, Reina G, Orlanducci S, Mizzoni F, Gay S, Terranova M-L, Canini A (2015) Biomaterials 38:22–35

    Article  CAS  PubMed  Google Scholar 

  30. Chang YC (2008) Nat Nanotechnol 3:284–8

    Article  CAS  PubMed  Google Scholar 

  31. (1930) Robertson, Fox, Davies

  32. Lawson S, Davies G, Collins A, Mainwood A (1992) J Phys Cond Mater 4:125–31

    Article  Google Scholar 

  33. Iakoubovskii K, Kiflawi I, Johnston K, Collins A, Davies G, Stesmans A (2003) Physica B 340-342:67–75

    Article  CAS  Google Scholar 

  34. Davies G (1970)

  35. Davies G, Hamer MF (1976) Proc R Soc London Ser A 348:285

    Article  CAS  Google Scholar 

  36. Mita Y (1996) Phys Rev B 53:11360

    Article  CAS  Google Scholar 

  37. Barnard AS, Sternberg M (2005) J Chem Phys B 109:17107–17112

    Article  CAS  Google Scholar 

  38. Yu T, XiaoPeng J, Yi ZC, Sheng LS, Yu XH, Fei ZY, Feng HG, Rui L, Gang HQ, Ma LQ, Yong L, Zhou CX, Chong Z, An MH (2009) Chin Bull Sci 09(54):1459

    Google Scholar 

  39. Rondin L, Dantelle G, Slablab a., Grosshans f., Treussart F, Bergonzo P, Perruchas S, Gacoin T, Chaigneau M, Chang HC, Jacques V, Roch J-F (2010) Phys Rev B 82:115449

    Article  Google Scholar 

  40. Kalish R, Uzan-Saguy C, Philosoph B, Richter V, Lagrange JP, Gheeraert E, Deneuville A, Collins A (1997) Diam Relat Mater 6:516–520

    Article  CAS  Google Scholar 

  41. Meijer J, Vogel T, Burchard B, Rangelow IW, Bischoff L, Wrachtrup J, Domhan M, Jelezko F, Schnitzler W, Schulz SA, Singer K, Schmidt-Kaler F (2006) Appl Phys. A 83:321– 327

    Article  CAS  Google Scholar 

  42. Cui J-M, Chen X-D, Fan L-L, Gong Z-J, Zou C-W, Sun F-W, Han Z-F, Guo G-C (2012) vol 29, p 036103

  43. Pezzagna S, Meijer J (2001) www.intechopen.com

  44. Pezzagna S, Naydenov B, Jelezko F, Wrachtrup J, Meijer J (2010) J Phys New 12:065017

    Article  Google Scholar 

  45. Chrenko RM, Tuft RE, Strong HM (1977) Nature 270:141–144

    Article  CAS  Google Scholar 

  46. Kiflawia I, Kandac H, Lawsond SC (2002) Diam Relat Mater 11:204–211

    Article  Google Scholar 

  47. Babich YV, Feigelson BN (2009) Geochem Int 47(1):94–98

    Article  Google Scholar 

  48. Barnard AS, Sternberg M (2007) Nanotechnology 18:025702

    Article  Google Scholar 

  49. Santori C, Barclay PE, Fu Kai-Mai C, Beausoleil RG (2009) Phys Rev B 79:125313

    Article  Google Scholar 

  50. Collins A (2002) J Phys Cond Mater 14:3743

    Article  CAS  Google Scholar 

  51. Collins A, Connor A, Ly CH, Shareef A, Spear MP (2005) J Appl Phys 083517:97

    Google Scholar 

  52. Chen L-H, Lim T-S, Chang H-C (2012) J Opt Soc Am B 29:9

    Google Scholar 

  53. Butenko YV, Krishnamurthy S, Chakraborty AK, Kuznetsov VL, Dhanak VR, Hunt MRC, Šiller L (2005) Phys Rev B 71(7):075420

    Article  Google Scholar 

  54. Arnault JC (2015). In: Yana N (ed) Novel Aspects of Diamonds. Springer

  55. Evans T (1962) Proceeding of the Fifth Carbon Conference, 147-153. Pergamon Press, New York

    Google Scholar 

  56. Jenkins GM, Kawamura K (1971) Nature 231:175

    Article  CAS  Google Scholar 

  57. Kinoshita K (1988) Carbon, Electrochemical and Physico-chemical Properties. Wiley, New York

    Google Scholar 

  58. Lu C-L, Lin H-C, Hwanga C-C, Wang J, Lin M-F, Chang C-P (2006) Appl Phys Lett 89:221910

    Article  Google Scholar 

  59. Walker J (1979) Rep Prog Phys 42

  60. Baughman RH (1993) Chem Phys Lett 204:8–12

    Article  CAS  Google Scholar 

  61. Bundy FP (1992) Physica A 156:169–179

    Article  Google Scholar 

  62. Whittaker AG et al (1978) Science 200:763–764

    Article  CAS  PubMed  Google Scholar 

  63. Ristein J (2000) Diam Relat Mater 9:1129

    Article  CAS  Google Scholar 

  64. Milazzo G, Caroli S, Sharma VK (1978) Tables of Standard electrode Potentials. Wiley, Chichester

    Google Scholar 

  65. Hyun C, Suk et al (2008) J. Power Source:185

  66. Brodie et al (1859) Phil Trans Roy Soc London Series A 149:249–259

  67. Boehm et al (2007) Carbon 45:1381–1383

  68. Tisler J, Balasubramanian G, Naydenov B, Kolesov R, Grotz B, Reuter R, Boudou JP, Curmi PA, Sennour M, Thorel A, Borsch M, Aulenbacher K, Erdmann R, Hemmer PR, Jelezko F, Wrachtrup J (2009) ACS Nano 3(7):1959–1965

    Article  CAS  PubMed  Google Scholar 

  69. Li Y-F, Chen S-M, Lai W-H, Sheng Y-J, Tsao H-K (2013) J Chem Phys 139:064703

    Article  PubMed  Google Scholar 

  70. Oberlin M (1964) Carbon 1:471–480

    Article  CAS  Google Scholar 

  71. Thiele H (1936) Nature 138:688–690

    Article  CAS  Google Scholar 

  72. Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gogotsi Y (2006) J Am Chem Soc 128:11635–11642

    Article  CAS  PubMed  Google Scholar 

  73. Pichot V, Stephan O, Comet M, Fousson E, Mory J, March K, Spitzer D (2010) J Phys Chem C 114:10082–10087

    Article  CAS  Google Scholar 

  74. Grotz B, Hauf MV, Dankerl M, Naydenou B, Pezzagna S, Meijer J, Jelezko F, Warchtrup J, Stutzmann M, Reinhard F, Garrido JA (2012) Nature Comm 3:729

    Article  Google Scholar 

  75. Hauf MV, Grotz B, Naydenov B, Dankerl M, Pezzagna S, Meijer J, Jelezko F, Warchtrup J, Stutzmann M, Reinhard F, Garrido JA (2011) Phys Rev B 081303:83

    Google Scholar 

  76. Yavorsky IA (1969) Carbon 7:287–291

    Article  Google Scholar 

  77. Puri et al (1970). In: Walker PL, Dekker M (eds) Chemistry and Physics of Carbon 6, pp 191–282

  78. Montoya A (2003) Carbon 41

  79. Carroll M, Mc Kee DW (1970) Nature 225:722–723

    Article  Google Scholar 

  80. Gaillard C, Girard HA, Falck C, Paget V, Simic V, Ugolin N, Bergonzo P, Chevillard S, Arnault J.-C. (2014) The Royal Society of Chemistry RSC Adv 4(7):3566–3572

    Article  CAS  Google Scholar 

  81. Chang HC (2013) Adv Funct Mater 23:5737

    Article  CAS  Google Scholar 

  82. Jung E, Lee S, Roh S, Hwang E, Lee J, Lee H, Hwang J (2014) J Phys D Appl Phys 47 (6pp):265306

    Article  Google Scholar 

  83. Chen N, Yang RT (1998) J Phys Chem A 102(31):6348–6356

    Article  CAS  Google Scholar 

  84. Montes-Moran MA, Suarez D, Menendez JA, Fuente E et al (2004) Carbon 42:1219–1225

    Article  CAS  Google Scholar 

  85. Boehm HP (2001) World of Carbon 1

  86. Dalcanale E, Montanari F (1986) J Org Chem 51:567

    Article  CAS  Google Scholar 

  87. Raymond KR (1990). In: Bretherick L (ed) private communication, vol 1983. Butterworths

  88. Radell J, Connoly JW (1962) ASD report 271592, 61-109, Aeronautical Systems Div., Arlington, Virginia, USA, Project 7360, Task:73607

  89. Kevill ND, Shen BW (1981) J Am Chem Soc 103:4515–4521

    Article  CAS  Google Scholar 

  90. (1940) Pfeiffer, Saal ACS

  91. Fu CKM, Santori C, Barclay PE, Beausoleil RG (2010) Appl Phys Lett 121907:96

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Pr. J.F. Roch, Pr. F. Treussart for physics discussions, and Pr I. Ledoux-Rak and Dr. J.P. Boudou for chemistry discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Babilotte.

Additional information

This research was completed while Dr. Philippe Babilotte was a researcher at the Laboratoire Aimé Cotton, UPR 3321 CNRS, LAC, Université Paris Sud Orsay, 91405 Orsay Cedex, France and at Physics Quantum and Molecular Photonics Laboratory, UMR 8537 CNRS, LPQM, Ecole normale supérieure de Cachan, 94235 Cachan Cedex, France.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babilotte, P. Redox and Organic Post-Annealing Chemical Processes Impacting the Fluorescence of N V Centers into Nanodiamonds. J Fluoresc 26, 2321–2332 (2016). https://doi.org/10.1007/s10895-016-1928-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1928-7

Keywords

Navigation