Skip to main content
Log in

Perylene Derivative Dyes Luminescence in Polysiloxane Matrix in Presence of Gold Nanoparticles

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Four perylene derivatives, including commercially available dyes Lumogen Red and Lumogen Orange, as well as 1,6,7,12-tetrachlоrоperylene-3,4,9,10-tetradicarboxydianhydride (Dye I) and 3,4:9,10-bis(1,2-benzimidazole)- 1,6,7,12-tetra(4-tert-octylphenoxy) perylene (syn/ anti-isomers) (Dye III, which was prepared from dye I through intermediate 3,4:9,10-bis(1,2-benzimidazole)-1,6,7,12-tetrachloro perylene (Dye II)) were used for preparation of polysiloxane samples (PSi) containing different concentrations of gold nanoparticles (GN). Dyes I and III demonstrate significant fluorescence intensity increase upon addition of GN independent on excitation energy. For Lumogen Red composition in PSi some increase of fluorescence intensity was observed upon addition of small concentrations of GN, while further increase of GN concentration quenches fluorescence. The increase of Lumogen Red emission intensity, which depends on energy of excitation, is probably due to the increase of radiation decay rate since excitation rate decreases. Effect of GN on Lumogen Orange provided quenching of fluorescence even at small concentrations of GN. Calculations at DFT level of approximation for dye III suggest location of GN in plane of perylene core for increase of fluorescence intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schon G, Simon U (1995) A fascinating new field in colloid science: small ligand-stabilized metal clusters and their possible application in microelectronics. Colloid Polym Sci 273:202–218

    Article  Google Scholar 

  2. Hirai H, Wakabayashi H, Komiyama M (1983) Polymer-protected copper colloids as catalysts for selective hydration of acrylonitrile. Chem Lett 12:1047–1050

    Article  Google Scholar 

  3. Bhargava S, Booth J, Agrawal S, Coloe P, Kar G (2005) Gold nanoparticles formation during bromoaurate reduction by amino acids. Langmuir 21:5949–5956

    Article  CAS  PubMed  Google Scholar 

  4. Pan A, Yang H, Liu R, Yu R, Zou B, Wang Z (2005) Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts. J Am Chem Soc 127:15692–15693

    Article  CAS  PubMed  Google Scholar 

  5. Peyser L, Vinson A, Bartko A, Dickinson R (2001) Photoactivated fluorescence from individual silver nanoclusters. Science 291:103–106

    Article  CAS  PubMed  Google Scholar 

  6. Haes A, Haynes C, McFarland A, Schatz G, Van Duyne R, Zhou S (2005) Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull 30:368–375

    Article  CAS  Google Scholar 

  7. Wokaum A, Lutz H-P, King A, Wild U, Ernst R (1983) Energy transfer in surface enhanced luminescence. J Chem Phys 79:509–514

    Article  Google Scholar 

  8. Chance R, Prock A, Silbey R (1978) Molecular fluorescence and energy transfer near interfaces. Adv Chem Phys 37:1–65

    CAS  Google Scholar 

  9. Lakowicz JR, Shen Y, Auria SD, Malicka J, Fang J, Gryczynski Z, Gryczynski I (2002) Radiative decay engineering: effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal Biochem 301:261–277

    Article  CAS  PubMed  Google Scholar 

  10. Chen Y, Munechika K, Plante I, Munro AM, Skrabalak S, Xia Y, Ginger DS (2008) Excitation enhancement of CdSe quantum dots by single metal nanoparticles. App. Phys Lett 93:053106.

  11. Tam F, Goodrich G, Johnson B, Halas N (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7:496–501

    Article  CAS  PubMed  Google Scholar 

  12. Musken O, Giannini V, Sánchez-Gil J, Rivas J (2007) Strong enhancement of the radiative decay rate of emitters by single plasmonic Nanoantennas. Nano Lett 7:2871–2875

    Article  Google Scholar 

  13. Granchak VM, Sakhno TV, Kuchmy SY (2014) Light-Emitting Materials - Active Components of Luminescent Solar Concentrators. Theor Exp Chem 50:1–20

    Article  CAS  Google Scholar 

  14. Buffa M, Carturan S, Debije MG, Quaranta A, Maggioni G (2012) Dye-doped polysiloxane rubbers for luminescent solar concentrator systems. Sol Energy Mater Sol Cells 103:114–118

    Article  CAS  Google Scholar 

  15. Canesi EV, Capsoni M, Karanam L, Lucotti A, Bertarelli C, Del Zoppo M (2013) Solution processed, versatile multilayered structures for the generation of metal-enhanced fluorescence. J Phys Chem C 117:13197–13181

    Article  CAS  Google Scholar 

  16. Lakowicz JR, Ray K, Chowdhury M, Szmacinski H, Fu Y, Zhang J, Nowaczyk K (2008) Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 133:1308–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Debije M, Verbunt P, Nadkarni PJ, Velate S, Bhaumik K, Nedumbamana S, Rowan B, Richards B, Hoeks T (2011) Promising fluorescent dye for solar energy conversion based on a perylene perinone. Appl Opt 50:163–169

    Article  CAS  PubMed  Google Scholar 

  18. Goyal A, Kumar A, Ajayan PM (2010) Metal salt induced synthesis of hybrid metal core-siloxane shell nanoparticles and siloxane nanowires. Chem Commun 46:964–966

    Article  CAS  Google Scholar 

  19. Jain PK, Huang X, El-Sayed IH, El-Sated MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586

    Article  CAS  PubMed  Google Scholar 

  20. El-Bashir S, Barakat F, Al Salhi M (2014) Double layered plasmonic thin-film luminescent solar concentrators based on polycarbonate supports. Renew Energy 63:642–649

    Article  CAS  Google Scholar 

  21. Ming T, Chen H, Jiang R, Li Q, Wang J (2012) Plasmon-controlled fluorescence: beyond the intensity enhancement. J Phys Chem Lett 3:191–202

    Article  CAS  Google Scholar 

  22. Sanchez-Gonzalez A, Corni S, Mennucci B (2011) Surface-enhanced fluorescence within a metal nanoparticle Array: the role of solvent and Plasmon couplings. J Phys Chem C 115:5450–5460

    Article  CAS  Google Scholar 

  23. Vukovic S, Corni S, Mennucci B (2009) Fluorescence enhancement of chromophores close to metal nanoparticles. Optimal setup revealed by the polarizable continuum model. J Phys Chem C 113:121–133

    Article  CAS  Google Scholar 

  24. Fihey A, Maurel F, Perrier A (2015) Plasmon–excitation coupling for dithienylethene/gold nanoparticle hybrid systems: a theoretical study. J Phys Chem 119(18):9995–10006

    CAS  Google Scholar 

  25. Chandra S, Doran J, McCormack SJ, Kennedy M, Chatten A (2012) Sol. Energy mat. Sol. Cells 98:385.

  26. Becke A (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648.

  27. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys Rev B 37

  28. Hay P, Wadt W (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE et al Gaussian 09, Revision C.01 (Gaussian, Inc., Wallingford, CT, 2010)

  30. Aldongarov A, Barashkov N, Irgibaeva I (2007) Calculated spectral properties of perylene orange, perylene red, and their complex with sodium azide. Int J Quantum Chem 107:2331–2342

    Article  CAS  Google Scholar 

  31. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  32. Stratmann R, Scuseria G, Frisch M (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218–8224

    Article  CAS  Google Scholar 

  33. Furche F, Ahlrichs R (2002) Adiabatic time-dependent density functional methods for excited state properties. J Chem Phys 117:7433–7474

    Article  CAS  Google Scholar 

  34. Xie J, Zheng Y, Ying J (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc Comm 131:888–889

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan. Authors would like to thank the National Scientific Laboratory of Shared Utilization of Informational and Space Technologies at KazNTU (Kazakh National Technical University) for providing computational resources and Institute of Nuclear Physics, Astana branch for making SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuar Aldongarov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantel, A., Shautenbaeva, N., Irgibaeva, I. et al. Perylene Derivative Dyes Luminescence in Polysiloxane Matrix in Presence of Gold Nanoparticles. J Fluoresc 26, 2213–2223 (2016). https://doi.org/10.1007/s10895-016-1917-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1917-x

Keywords

Navigation