Skip to main content
Log in

N-acetyl Glucosamine Distribution and Mitochondrial Activity of Tumor Cell Exposed to Photodynamic Therapy

  • RAPID COMMUNICATION
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The use of lectins can play an important role for tracking modification on cell surface components, since lectins can be easily complexed with radioisotopes, biotin or fluorescein, facilitating the evaluation of carbohydrates distribution in the cell and mitochondrial activity. The aim of this study was to evaluate photodynamic therapy effects on indirect distribution of N-acetyl-glucosamine terminal glycoproteins, in human laryngeal carcinoma HEp-2 cell line surface, using lectin wheat germ agglutinin (WGA) and on mitochondrial activity, for the same cell line, using MitoTracker. The photosensitizer Aluminum Phthalocyanine Tetrasulfonate (AlPcS4) was administrated at 10 μM/mL, followed by an incubation period for its accumulation in the tumor cells, which were irradiated with laser diode λ = 685 nm and energy density of 4.5 J/cm2. Our results indicated that, after Photodynamic Therapy (PDT), it was observed N-acetyl glucosamine terminal glycoprotein expression and mitochondrial O2 production, compared to the control group. Based on these results, we suggest that PDT influences the O2 mitochondrial production and the presence of surface glycoproteins N-acetyl glucosamine terminals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Lui H, Bissonnette R (1999) Photodynamic therapy. In: Goldman MP, Fitzpatrick RE (eds) Cutaneous laser surgery, 2 edn. Mosby, St. Louis, pp. 437–458

    Google Scholar 

  2. Nelson JS, Mccullough JL, Berns MW (1997) Principles and applications of photodynamic therapy in dermatology. In: Ardnt KA, Dover JS, Olbright SM (eds) Lasers in cutaneous and aesthetic surgery. Lippincot-Raven, Philadelphia, pp. 349–382

    Google Scholar 

  3. Ackroyd R, Kelty C, Brown N, Reed M (2001) The history of photodetection and photodynamic therapy. Photochem Photobiol 74:656–669

    Article  CAS  PubMed  Google Scholar 

  4. Yoon I, Li JZ, Shim YK (2013) Advance in photosensitizers and light delivery for photodynamic therapy. Clin Endosc 46:7–23

    Article  PubMed  PubMed Central  Google Scholar 

  5. Maisch T, Szeimies RM, Jori G, Abels C (2004) Antibacterial photodynamic therapy in dermatology. Photochem Photobiol Sci 3:907–917

    Article  CAS  PubMed  Google Scholar 

  6. Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 1:279–293

    Article  CAS  Google Scholar 

  7. Ma J, Jiang L (2001) Photogeneration of singlet oxygen (1O2) and free radicals (Sen−, O − 2) by tetra-brominated hypocrellin B derivative. Free Radic Res 35:767–777

    Article  CAS  PubMed  Google Scholar 

  8. Staicu A, Pascu A, Nuta A, Sorescu A, Raditoiu V, Pascu M (2013) Studies about phthalocyanine photosensitizers to be used in photodynamic therapy. Rom Rep Phys 65:1032–1051. Int. J. Mol. Sci. 2015, 16 22118

    CAS  Google Scholar 

  9. Zhao B, He YY (2010) Recent advances in the prevention and treatment of skin cancer using photodynamic therapy. Expert Rev Anticancer Ther 10:1797–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Da Silva ER, Dos Santos EP, Ricci-Júnior E (2009) Photodynamic therapy in the skin cancer treatment: concepts, utilizations and limitations. Rev Bras Farm 90(3):211–217

    Google Scholar 

  11. Lis H, Sharon N (1986) Lectin as molecules and as tools. Annu Rev Biochem 55:35–67

    Article  CAS  PubMed  Google Scholar 

  12. Mody R, Joshi S, Chaney W (1995) Use of lectins as diagnostic and therapeutic tools for cancer. J Pharmacol Toxicol Methods 33(1):1–10

    Article  CAS  PubMed  Google Scholar 

  13. Kennedy JF, Palva PMG, Corella MTS, Cavalcanti MSM, Coelho LCBB (1995) Lectins, versatile proteins of recognition: a review. Carbohydr Polym 26:219–230

    Article  CAS  Google Scholar 

  14. Sharon N, Lis H (1989) Lectins as cell recognition molecules. Science 246:227–234

    Article  CAS  PubMed  Google Scholar 

  15. Raz A, Mclellan WL, Hart IR, Bucana CD, Hoyer LC, Sela B-A, Dragsten P, Fidlercell IJ (1980) Cell surface properties of B16 melanoma variants with differing metastatic potential. Cancer Res 40(5):1645–1651

    CAS  PubMed  Google Scholar 

  16. Ballut S, Makky A, Loock B, Michel JP, Maillard P, Rosilio V (2009) New strategy for targeting of photosensitizers, synthesis of glycodendrimeric phenylporphyrins, incorporation into a liposome membrane interaction with a specific lectin. Chem Commun 2:224–226

    Article  Google Scholar 

  17. Nagata Y, Burger MM (1974) Wheat germ agglutinin molecular characteristics and specificity for sugar binding. J Biol Chem 249(10):3116–3122

    CAS  PubMed  Google Scholar 

  18. Kearse KP, Singer A (1994) Isolation of immature and mature T cell receptor complexes by lectin affinity chromatography. J Immunol Methods 167:75–81

    Article  CAS  PubMed  Google Scholar 

  19. Rousset N, Vonarx V, Eleouet S, Carré J, Kerninon E, Lajat Y, Patrice T (1999) Effects of photodynamic therapy on adhesion molecules and metastasis. J Photochem Photobiol B Biol 52(1–3):65–73

    Article  CAS  Google Scholar 

  20. Kim J, Jung H, Lim W, Kim S, Ko Y, Karna S, Kim O, Choi Y, Choi H, Kim O (2013) Down-regulation of heat-shock protein 27–induced resistance to photodynamic therapy in oral cancer cells. J Oral Pathol Med 42:9–16

    Article  CAS  PubMed  Google Scholar 

  21. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry 5th edn. W H Freeman, New York. Section 11.4, Lectins Are Specific Carbohydrate-Binding Proteins

    Google Scholar 

  22. Goldstein IJ, Hughes RC, Monsigny M, Ozawa T, Sharon N (1980) What should be called a lectin? Nature 285:66

    Article  Google Scholar 

  23. Buckman JF et al. (2001) Mitotracker labeling in primary neuronal and astrocytic cultures: influence of mitochondrial membrane potencial and oxidants. J Neurosci Methods 104:165–176

    Article  CAS  PubMed  Google Scholar 

  24. Cregan SP et al. (2002) Apoptosis inducing factor is involved in the regulation of caspase-independent neuronal cell death. J Cell Biol 158:507–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Greene WC, Goldman CK, Marshall ST, Fleisher TA, Waldmann TA (1981) Stimulation of immunoglobulin biosyntesis in human B cells by wheat germ agglutinin. I. Evidence that WGA can produce both a positive and negative signal for activation of human lymphocytes. J Immunol 127(2):799–804

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pacheco-Soares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, G.P., Lopes, K.A.R., Salles, N.G. et al. N-acetyl Glucosamine Distribution and Mitochondrial Activity of Tumor Cell Exposed to Photodynamic Therapy. J Fluoresc 26, 1923–1926 (2016). https://doi.org/10.1007/s10895-016-1914-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1914-0

Keywords

Navigation