Skip to main content
Log in

Synthesis, Structural, DNA Binding and Cleavage Studies of Cu(II) Complexes Containing Benzothiazole Cored Schiff Bases

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Novel benzothiazole Schiff bases L1 [1-((4,6-difluorobenzo[d]thiazol-2-ylimino)methyl) naphthalen-2-ol], L2 [3-((4,6-difluorobenzo[d]thiazol-2-ylimino) methyl)benzene-1,2-diol], L3 [2-((4,6-difluorobenzo[d]thiazol-2-ylimino)methyl)-5-methoxyphenol], L4 [2-((4,6-difluorobenzo[d]thiazol-2-ylimino)methyl)-4-chlorophenol] and their binary Cu(II) complexes were synthesized. The structures of all the compounds have been discussed on the basis of elemental analysis, FT-IR, NMR, UV-Visible, ESI-Mass, TGA, ESR, SEM, powder XRD and magnetic moments. Based on the analytical and spectral data a square planar geometry has been assigned to all complexes in which the Schiff bases act as monobasic bidentate ligands, coordinating through the azomethine nitrogen and phenolic oxygen atom. DNA binding ability of these complexes was studied on CT-DNA by using UV-Vis absorption, fluorescence and viscometry. DNA cleavage ability of the complexes was examined on pBR322 DNA by using gel electrophoresis method. All the DNA binding studies reveal that they are good intercalators. The bioefficacy of the ligands and their complexes was examined against the growth of bacteria and fungi in vitro to evaluate their antimicrobial potential. The screening data revealed that the complexes showed more antimicrobial activity than the corresponding free ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Song YM, Wu Q, Yang PJ, Luan NN, Wang LF, Liu YM (2006) DNA binding and cleavage activity of Ni(II) complex with all-trans retinoic acid. J Inorg Biochem 100:1685–1691

    Article  CAS  PubMed  Google Scholar 

  2. Tan C, Liu J, Chen L, Shi S, Ji L (2008) Synthesis, structural characteristics DNA binding properties and cytotoxicity studies of a series of Ru(III) complexes. J Inorg Biochem 102:1644–1653

    Article  CAS  PubMed  Google Scholar 

  3. Zuber G, Quada JC Jr, Hecht SM (1998) Sequence selective cleavage of a DNA Octanucleotide by chlorinated Bithiazoles and Bleomycins. J Am Chem Soc 120:9368–9369

    Article  CAS  Google Scholar 

  4. Hall IH, Peaty NJ, Henry JR, Easmon J, Heinisch G, Purstinger G (1999) Investigations on the Mechanism of Action of the Novel Antitumor Agents 2-Benzothiazolyl, 2-Benzoxazolyl, and 2-Benzimidazolyl Hydrazones Derived from 2-Acetylpyridine. Arch Pharm 332:115–123

    Article  CAS  Google Scholar 

  5. Hutchinson I, Bradshaw TD, Matthews CS, Stevens MFG, Westwell AD (2003) Antitumour benzothiazoles. Part 20:3′-Cyano and 3′-Alkynyl-substituted 2-(4′-Aminophenyl)benzothiazoles as new potent and selective analogues. Bioorg Med Chem Lett 13:471–474

    Article  CAS  PubMed  Google Scholar 

  6. D.M AE-A, Etaiw SEH, Ali EA (2013) Synthesis, spectroscopic, cytotoxic aspects and computational study of N-(pyridine-2-ylmethylene)benzo[d]thiazol-2-amine Schiff base and some of its transition metal complexes. J Mol Struct 1048:487–499

    Article  Google Scholar 

  7. Benazzouz A, Boraud T, Dubedat P, Boireau A, Stutzmann JM, Gross C (1995) Riluzole prevents MPTP-induced parkinsonism in the rhesus monkey: a pilot study. Eur J Pharmacol 284:299–307

    Article  CAS  PubMed  Google Scholar 

  8. Arjunan V, Sakiladevi S, Rani T, Mythili CV, Mohan S (2012) FTIR, FT-Raman, FT-NMR, UV–visible and quantum chemical investigations of 2-amino-4 methylbenzothiazole. Spectrochim Acta A 88:220–231

    Article  CAS  Google Scholar 

  9. Ma Y, Cao L, Kawabata T, Yoshino T, Yang B.B, Okada S (1998) Cupric nitrilotriacetate induces oxidative DNA damage and apoptosis in human leukemia HL-60 cells. Free Radic Biol Med 25:568575.

  10. Nalawade AM, Nalawade RA, Patange SM, Tase DR (2013) Thiazole Containing Schiffs Bases and Their Transition Metal Complexes. Int Eng Sci Inven 2:1–4

    Google Scholar 

  11. Li H, Li J, Chen H, Zhang Y, Huang D (2011) Synthesis and crystal structure of charge transfer complex (CTC) of 2-aminobenzothiazole with its Schiff Base. J Chem Crystallogr 41:1844–1849

    Article  CAS  Google Scholar 

  12. Raman N, Selvan A, Sudharsan S (2011) Metallation of ethylenediamine based Schiff base with biologically active Cu(II), Ni(II) and Zn(II) ions: synthesis, spectroscopic characterization, electrochemical behaviour, DNA binding, photonuclease activity and in vitro antimicrobial efficacy. Spectrochim Acta A 79:873–883

    Article  CAS  Google Scholar 

  13. Arjmand F, Mohani B, Parveen S (2006) New Dihydro OO'Bis(Salicylidene) 2,2' Aminobenzothiazolyl borate complexes: kinetic and Voltammetric studies of Dimethyltin copper complex with guanine, adenine, and calf thymus DNA. Bioinorg Chem Appl 1 http://dx.doi.org/10.1155/BCA/2006/32896.

  14. Rajarajeswari C, Ganeshpandian M, Palaniandavar M, Riyasdeen A, Akbarsha MA (2014) Mixed ligand copper(II) complexes of 1,10-phenanthroline with tridentate phenolate/pyridyl/(benz)imidazolyl Schiff base ligands: covalent vs non-covalent DNA binding, DNA cleavage and cytotoxicity. J Inorg Biochem 140:255–268

    Article  CAS  PubMed  Google Scholar 

  15. Wu H, Yuan J, Huang X, Kou F, Liu B, Jia F, Wang K, Bai Y (2012) Two zinc(II) and cadmium(II) complexes based on the V-shaped ligand 2,6-bis(2 benzimidazolyl)pyridine: synthesis, crystal structure, DNA-binding properties and antioxidant activities. Inorg Chim Acta 390:12–21

    Article  CAS  Google Scholar 

  16. Easmon J, Pürstinger G, Heinisch G, Roth T, Fiebig HH, Holzer W, Jäger W, Jenny M, Hofmann J (2001) Synthesis, cytotoxicity, and antitumor activity of copper(II) and iron(II) complexes of 4 N-Azabicyclo[3.2.2]nonane thiosemicarbazones derived from acyl Diazines. J Med Chem 44:2164–2171

    Article  CAS  PubMed  Google Scholar 

  17. Tahghighi A (2014) Importance of metal complexes for development of potential leishmanicidal agents. J Organomet Chem 770:51–60

    Article  CAS  Google Scholar 

  18. Chityala V K, kumar K S, Ramesh M, Parthasarathy T, Shivaraj (2014) DNA Cleavage, Cytotoxic Activities, and Antimicrobial Studies of Ternary Copper(II) Complexes of Isoxazole Schiff Base and Heterocyclic Compounds. Hindawi Pub bioinochem and app doi:http://dx.doi.org/10.1155/2014/691260.

  19. Kumar MP, Tejaswi S, Rambabu A, Kalalbandi VKA, Shivaraj (2015) Synthesis, crystal structure, DNA binding and cleavage studies of copper(II) complexes with isoxazole Schiff bases. Polyhedron 102:111–120

    Article  Google Scholar 

  20. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218. doi:10.1016/s0022-2836(61)80047-8

    Article  CAS  Google Scholar 

  21. Kumar CV, Asuncion EH (1993) DNA binding studies and site selective fluorescence sensitization of an anthryl probe. J Am Chem Soc 115:8547–8553. doi:10.1021/ja00072a004

    Article  CAS  Google Scholar 

  22. Tandon VK, Yadav DB, Singh RV, Vaish M, Chaturvedi AK, Shukla PK (2005) Synthesis and biological evaluation of novel 1,4-naphthoquinone derivatives as antibacterial and antiviral agents. Bioorg Med Chem Lett 15:3463–3466. doi:10.1016/j.bmcl.2005.04.075

    Article  CAS  PubMed  Google Scholar 

  23. Bhunora S, Mugo J, Bhaw-Luximon A, Mapolie S, Van Wyk J, Darkwa J, Nordlander E (2011) The use of Cu and Zn salicylaldimine complexes as catalyst precursors in ring opening polymerization of lactides: ligand effects on polymer characteristics. Appl Organomet Chem 25:133–145

    Article  CAS  Google Scholar 

  24. Youssef NS, El-Zahany E, El-Seidy AMA, Caselli A, Fantauzzi S, Cenini S (2009) Synthesis and characterisation of new Schiff base metal complexes and their use as catalysts for olefin cyclopropanation. Inorg Chim Acta 362:2006–2014

    Article  CAS  Google Scholar 

  25. Percy GC, Thornton DA (1973) Infrared spectra of N-aryl salicylaldimine complexes substituted in both aryl rings. J Inorg Nucl Chem 35:2319–2327

    Article  CAS  Google Scholar 

  26. Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds, fifth edn. Wiley-Interscience, New York

    Google Scholar 

  27. Bellamy LJ (1980) The Infrared Spectra of Complex Molecules, second edn. Chapmann and Hall, London

    Book  Google Scholar 

  28. Cotton FA, Wilkinson G (1972) Advanced Inorganic Chemistry, third edn. Interscience Publisher, New York

    Google Scholar 

  29. Lever ABP (1984) Inorganic Electronic Spectroscopy, second edn. Elsevier, Amsterdam

    Google Scholar 

  30. Zhou Y, Ye X, Xin F, Xin X (1999) Solid state self-assembly synthesis of cobalt(II), nickel(II), copper(II) and zinc(II) complexes with a bis-Schiff base. Transit Met Chem 24:118–120

    Article  CAS  Google Scholar 

  31. Ramesh R, Maheswaran S (2003) Synthesis, spectra, dioxygen affinity and antifungal activity of Ru(III) Schiff base complexes. J Inorg Biochem 96:457–462

    Article  CAS  PubMed  Google Scholar 

  32. Unver H, Hayvali Z (2010) Synthesis, spectroscopic studies and structures of square-planar nickel(II) and copper(II) complexes derived from 2-{(Z)-[furan-2 ylmethyl]imino]methyl}-6-methoxyphenol. Spectrochim Acta A 75:782–788

    Article  Google Scholar 

  33. Patel RN, Singh N, Shukla KK, Chauhan UK, Nicols -Gutierrez J, Castineiras A (2004) Magnetic, spectroscopic, structural and biological properties of mixed-ligand complexes of copper(II) with N,N,N ,N″,N″-pentamethyldiethylenetriamine and polypyridine ligands. Inorg Chim Acta 357:2469–2476

    Article  CAS  Google Scholar 

  34. Kivelson D, Neiman R (1961) ESR studies on the bonding in copper complexes. J Chem Phys 35:149–155

    Article  CAS  Google Scholar 

  35. Hathaway BJ, Billing DE (1970) The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord Chem Rev 5:143–207

    Article  CAS  Google Scholar 

  36. Barton JK, Danishefsky AT, Goldberg JM (1984) Tris(phenanthroline)ruthenium(II): stereoselectivity in binding to DNA. J Am Chem Soc 106:2172–2176

    Article  CAS  Google Scholar 

  37. Tysoe SA, Morgan RJ, Baker AD, Strekas TC (1993) Spectroscopic investigation of differential binding modes of DELTA and LAMBDA.-Ru(bpy)2(ppz)2 with calf thymus DNA. J Phys Chem 97:1707–1711

    Article  CAS  Google Scholar 

  38. Liu HK, Sadler PJ (2011) Metal complexes as DNA intercalators. Acc Chem Res 44:349–359

    Article  CAS  PubMed  Google Scholar 

  39. Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, Barton JK (1989) Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. J Am Chem Soc 111:3051–3058

    Article  CAS  Google Scholar 

  40. Li TR, Yang ZY, Wang BD, Qin DD (2008) Synthesis, characterization, antioxidant activity and DNA-binding studies of two rare earth(III) complexes with naringenin-2-hydroxy benzoyl hydrazone ligand. Eur J Med Chem 43:1688–1695

    Article  PubMed  Google Scholar 

  41. Sampath K, Sathiyaraj S, Jayabalakrishnan C (2013) DNA binding, DNA cleavage, antioxidant and cytotoxicity studies on ruthenium(II) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones. Spectrochim Acta A 105:582–592

    Article  CAS  Google Scholar 

  42. Waring MJ (1965) Complex formation between ethidium bromide and nucleic acids. J Mol Biol 13:269–282

    Article  CAS  PubMed  Google Scholar 

  43. Meyer-Almes FJ, Porschke D (1993) Mechanism of intercalation into the DNA double helix by ethidium. Biochemistry 32:4246–4253

    Article  CAS  PubMed  Google Scholar 

  44. Lepecq JB, Paoletti C (1967) A fluorescent complex between ethidium bromide and nucleic acids: physical-chemical characterization. J Mol Biol 27:87–106

    Article  CAS  PubMed  Google Scholar 

  45. Chen J, Wang X, Chao Y, Zhu JH, Zhu YG, Li YZ, Xu Q, Guo ZJ (2007) A Trinuclear copper(II) complex of 2,4,6-Tris(di-2-pyridylamine)-1,3,5-triazine shows prominent DNA cleavage activity. Inorg Chem 46:3306–3312. doi:10.1021/ic0614162

    Article  CAS  PubMed  Google Scholar 

  46. Tarui M, Doi M, Ishida T, Inoue M, Nakaike S, Kitamura K (1994) DNA-binding characterization of a novel anti-tumour benzo[a]phenazine derivative NC-182: spectroscopic and viscometric studies. Biochem J 304:271–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guo H, Lu J, Ruan Z, Zhang Y, Liu Y, Zang L, Jiang J, Huang J (2012) Synthesis, DNA-binding, cytotoxicity, and cleavage studies of unsymmetrical oxovanadium complexes. J Coord Chem 65:191–204

    Article  CAS  Google Scholar 

  48. Satyanarayana S, Dabrowiak JC, Chaires JB (1993) Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: mode and specificity of binding. Biochemistry 32:2573–2584

    Article  CAS  PubMed  Google Scholar 

  49. Zhen X S, Ye H B, Zhang L Q, Liu G J, Li H, Ji N L (1998) Synthesis characterization and effect of ligand planarity of [Ru(bipy)2 L)2+ on DNA binding affinity.

  50. Sigman DS (1986) Nuclease activity of 1,10-phenanthroline-copper ion, nuclease activity of 1,10-phenanthroline-copper ion. Acc Chem Res 19:180–186

    Article  CAS  Google Scholar 

  51. Belai S, Landreau A, Djebbar S, Benali-Baitich O, Bouet G, Bouchara JP (2008) Synthesis, characterization and antifungal activity of a series of manganese(II) and copper(II) complexes with ligands derived from reduced N,N′-O-phenylenebis(salicylideneimine). J Inorg Biochem 102:63–69

    Article  Google Scholar 

  52. Tweedy BG (1964) Possible mechanism for reduction of elemental sulfur by Monilinia fructicola. Phytopathology 55:910–914

    Google Scholar 

  53. Sharma AK, Chandra S (2011) Complexation of nitrogen and Sulphur donor Schiff's base ligand to Cr(III) and Ni(II) metal ions: synthesis, spectroscopic and antipathogenic studies. Spectrochim Acta A 78:337–342

    Article  Google Scholar 

  54. Chohan ZH (2004) Synthesis and biological properties of Cu(II) complexes with 1,1′-Disubstituted Ferrocenes. Synth React Inorg met Org Chem 34:833–846

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to the Head, Department of Chemistry for providing the necessary facilities. We are thankful to the Director, CFRD, Osmania University, Hyderabad, and the Director, IICT, Hyderabad, and the SAIF, IIT Bombay for providing spectral and analytical data. We are also thankful to DST-PURSE, DST-SERB and UGC-UPE (FAR) for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivaraj.

Electronic supplementary material

ESM 1

(DOCX 110 kb)

ESM 2

(DOCX 55 kb)

ESM 3

(DOCX 58 kb)

ESM 4

(DOCX 59 kb)

ESM 5

(DOCX 63 kb)

ESM 6

(DOCX 121 kb)

ESM 7

(DOCX 587 kb)

ESM 8

(DOCX 153 kb)

ESM 9

(DOCX 51 kb)

ESM 10

(DOCX 56 kb)

ESM 11

(DOCX 92 kb)

ESM 12

(DOCX 136 kb)

ESM 13

(DOCX 76 kb)

ESM 14

(DOCX 87 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tejaswi, S., Kumar, M.P., Rambabu, A. et al. Synthesis, Structural, DNA Binding and Cleavage Studies of Cu(II) Complexes Containing Benzothiazole Cored Schiff Bases. J Fluoresc 26, 2151–2163 (2016). https://doi.org/10.1007/s10895-016-1911-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1911-3

Keywords

Navigation