Skip to main content
Log in

Studies on Photocleavage, DNA Binding, Cytotoxicity, and Docking Studies of Ruthenium(II) Mixed Ligand Complexes

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

This article describes the synthesis and characterization of three new Ru(II) polypyridyl complexes including [Ru(phen)2(dpphz)]2+ (1), [Ru(bpy)2(dpphz)]2+ (2) and [Ru(dmb)2(dpphz)]2+ (3) where dpphz = dipyrido[3,2-a:2′,3′-c] phenazine-11-hydrazide, phen =1,10-phenanthroline, bpy = 2,2′-bipyridine and dmb = 4,4′-dimethyl2,2′-bipyridine. The binding behaviors of these complexes to calf thymus DNA (CT-DNA) were explored by spectroscopic titrations, viscosity measurements. Results suggest that these complexes can bind to CT-DNA through intercalation. However, their binding strength differs from each other; this may be attributed to difference in the ancillary ligand. The cytotoxicity of 1–3 was evaluated by MTT assay; results indicated that all complexes have significant dose dependent cytotoxicity with HeLa tumor cell line. All complexes exhibited efficient photocleavage of pBR322 DNA upon irradiation. The DNA binding ability of 1–3 was also studied by docking the complexes into B-DNA using docking program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mjos KD, Orvig C (2014) Metallodrugs in Medicinal Inorganic Chemistry. Chem. Rev 114(8):4540–4563

    Article  CAS  PubMed  Google Scholar 

  2. Ma DL et al. (2014) Antagonizing STAT3 dimerization with a rhodium (III) complex. Angew Chem 126:9332–9336

    Article  Google Scholar 

  3. Muhammad N, Guo Z (2014) Metal-based anticancer chemotherapeutic agents. Curr Opin Chem Biol 19:144–153

    Article  CAS  PubMed  Google Scholar 

  4. Liu L-J, L.-J, et al. (2015) An iridium (III) complex inhibits JMJD2 activities and acts as a potential epigenetic modulator. J. Med. Chem 58:6697–6703

    Article  CAS  PubMed  Google Scholar 

  5. Zhong H–J et al. (2015) An iridium (iii)-based irreversible protein-protein interaction inhibitor of BRD4 as a potent anticancer agent. Chem Sci 6:5400–5408

    Article  CAS  Google Scholar 

  6. Dasa D, Mondal P (2015) Interaction of ruthenium (II) antitumor complexes with d(ATATAT)2 and d(GCGCGC)2: a theoretical study. New J Chem 39:2515–2522

    Article  Google Scholar 

  7. Sasmal K, Patra AK, Chakravarty AR (2008) Synthesis, structure, DNA binding and DNA cleavage activity of oxovanadium (IV) N-salicylidene-S-methyldithiocarbazate complexes of phenanthroline bases. J Inorg Biochem 102:1463–1472

    Article  CAS  PubMed  Google Scholar 

  8. Roy S, Patra AK, Dhar S, Chakravarty AR (2008) Photosensitizer in a molecular bowl and its effect on the DNA binding and cleavage activity of 3d-metal scorpionates. Inorg Chem 47:5625–5633

    Article  CAS  PubMed  Google Scholar 

  9. Sasmal K, Patra AK, Nethaji M, Chakravarty AR (2007) DNA cleavage by new oxovanadium(IV) complexes of N-salicylidene α-amino acids and phenanthroline bases in the photodynamic therapy window. Inorg Chem 46:11112–11121

    Article  CAS  PubMed  Google Scholar 

  10. Roy M, Saha S, Patra AK, Nethaji M, Chakravarty AR (2007) Ternary iron(III) complex showing photocleavage of DNA in the PDT window. Inorg Chem 46:4368–4370

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka K, Ohkubo S, Fukuzumi (2006) Reductive DNA Cleavage Induced by UVA Photoirradiation of NADH without Oxygen. J. Am. Chem. Soc 108:12372–12373

    Article  Google Scholar 

  12. Tanaka K, Ohkubo S, Fukuzumi (2006) DNA Cleavage by UVA Irradiation of NADH with Dioxygen via Radical Chain Processes. J. Phys. Chem. A 110:11214–11218

    Article  CAS  PubMed  Google Scholar 

  13. Mackay S, Woods JA, Moseley H, Ferguson J, Dawson A, Parsons S, Sadler PJ (2006) A photoactivated trans-diammine platinum complex as cytotoxic as cisplatin. Chem Eur J 12:3155–3161

    Article  CAS  PubMed  Google Scholar 

  14. Dhar S, Nethaji M, Chakravarty AR (2005) Steric protection of a photosensitizer in a N, N-Bis [2-(2-pyridyl) ethyl]-2-phenylethylamine-copper (II) bowl that enhances red light-induced DNA cleavage activity. Inorg Chem 44:8876–8883

    Article  CAS  PubMed  Google Scholar 

  15. Yang P, Yang Q, Qian XH, Cui JN (2005) Novel synthetic isoquinolino[5,4-ab]phenazines: inhibition toward topoisomerase I, antitumor and DNA photo-cleaving activities. Bioorg Med Chem 13:5909–5914

    Article  CAS  PubMed  Google Scholar 

  16. Shi S, Liu J, Li J, Kang C, Tan CP, Chen LM, Ji LN (2005) Electronic effect of different positions of the -NO2 group on the DNA-intercalator of chiral complexes [Ru(bpy)2L]2+ (L = o-npip, m-npip and p-npip. Dalton Trans:2038–2046

  17. Mukherjee A, Dhar S, Nethaji M, Chakravarty AR (2005) Ternary iron(II) complex with an emissive imidazopyridine arm from Schiff base cyclizations and its oxidative DNA cleavage activity. Dalton Trans:349–353

  18. Rajendran M, Gandhidasan R, Murugesan R (2004) Photosensitisation and photoinduced DNA cleavage by four naturally occurring anthraquinones. J. Photochem. Photobiol. A 168:67–73

    Article  CAS  Google Scholar 

  19. He P, Tian T, Wang P, Wu L, Xu JJ, Zhou X, Zhang XL, Cao XP, Wu XJ (2004) Porphyrin–DNA cross-linking agent hybrids: chemical synthesis and biological studies. Bioorg Med Chem Lett 14:3013–3014

    Article  CAS  PubMed  Google Scholar 

  20. Tang L, Yuan G, Wang J (2003) Synthesis and Photoinduced DNA Cleaving Activity of Hairpin Polyamide–Chlorobenzenesulfonyl Conjugate. Photochem. Photobiol 78:175179

    Article  Google Scholar 

  21. Kou J-F et al. (2012) Chiral ruthenium (II) anthraquinone complexes as dual inhibitors of topoisomerases I and II. J Biol Inorg Chem 17:81–96

    Article  CAS  PubMed  Google Scholar 

  22. Li F, Collins JG, Keene FR (2015) Ruthenium complexes as antimicrobial agents. Chem. Soc. Rev 44:2529–2542

    Article  CAS  PubMed  Google Scholar 

  23. Song H, Kaiser JT, Barton JK (2012) Crystal structure of Δ -[Ru (bpy)2dppz]2+ bound to mismatched DNA reveals side-by-side metalloinsertion and intercalation. Nat Chem 4:615–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Levina A, Mitra A, Lay PA (2009) Recent developments in ruthenium anticancer drugs. Metallomics 1:458–470

    Article  CAS  PubMed  Google Scholar 

  25. Qian C et al. (2013) The induction of mitochondria-mediated apoptosis in cancer cells by ruthenium (II) asymmetric complexes. Metallomics 5:844–854

    Article  CAS  PubMed  Google Scholar 

  26. Bhat TA, Kumar S, Chaudhary AK, Yadav N, Chandra D (2015) Restoration of mitochondria function as a target for cancer therapy. Drug Discov Today 20:635–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Véry T, Ambrosek D, Otsuka M, Gourlaouen C, Assfeld X, Monari A, Daniel C (2014) Photophysical properties of ruthenium(II) polypyridyl DNA intercalators: effects of the molecular surroundings investigated by theory. Chem Eur J 20(40):12901–12909

    Article  PubMed  Google Scholar 

  28. Jenkins Y, Friedman AE, Turro NJ, Barton JK (1992) Characterization of dipyridophenazine complexes of ruthenium (II): the light switch effect as a function of nucleic acid sequence and conformation. Biochemistry 31:10809–10816

    Article  CAS  PubMed  Google Scholar 

  29. Toshima K, Takano R, Ozawa T, Matsumura S (2002) Molecular design and evaluation of quinoxaline-carbohydrate hybrids as novel and efficient photo-induced GG-selective DNA cleaving agents. Chem Commun:212–213

  30. Tan L, Shen J, Liu J, Zeng L, Jina L, Weng C (2012) Spectral characteristics, DNA-binding and cytotoxicity of two functional Ru(II) mixed-ligand complexes. Dalton Trans 41:4575–4587

    Article  CAS  PubMed  Google Scholar 

  31. L.N. Ji, X.H. Zon, J.G. Ziu, (2001) Shape- and enantioselective interaction of Ru(II)/Co(III) polypyridyl complexes with DNA, Coord Chem Rev 216217, 5135–36.

  32. Sun Y, Collins SN, Joyce LE, Turro C (2010) Unusual photophysical properties of a ruthenium(II) complex related to [Ru(bpy)2(dppz)]2+. Inorg Chem 49(9):4257–4262May 3

    Article  CAS  PubMed  Google Scholar 

  33. Liu JG, Zhang QL, Shi XF, Ji LN (2001) Interaction of [Ru(dmp)2(dppz)]2+ and [Ru(dmb)2(dppz)]2+ with DNA: effects of the ancillary ligands on the DNA-binding behaviors. Inorg Chem 40:5045–5050

    Article  CAS  PubMed  Google Scholar 

  34. Nair RB, Teng ES, Kirkland SL, Murphy CJ (1998) Synthesis and DNA-binding properties of [Ru(NH(3))(4)dppz](2+. Inorg Chem 37:139–141

    Article  CAS  PubMed  Google Scholar 

  35. Boynton AN, Marcélis L, Barton JK (2016) Ru(Me4phen)2(dppz)]2+, a light Swtich for DNA mismatches. J Am Chem Soc 138:5020–5023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang S, Ding Y, Wei H (2014) Ruthenium Polypyridine complexes combined with oligonucleotides for Bioanalysis: a review. Molecules 19:11933–11987

    Article  PubMed  Google Scholar 

  37. Onfelt B, Lincoln P, Norden B (1999) A molecular staple for DNA: threading Bis-intercalating [Ru(phen)2dppz]2+ dimer. J Am Chem Soc 121:10846–10847

    Article  Google Scholar 

  38. Murphy CJ, Arkin MR, Jenkins Y, Gathlia ND, Bossmann SH, Turro NJ, Barton JK (1993) Long-range photoinduced electron transfer through a DNA helix. Science 262:1025–1029

    Article  CAS  PubMed  Google Scholar 

  39. Arkin MR, Stemp EDA, Holmlin RE, Barton JK, Hormann A, Olson EJC, Barbara PF (1996) Rates of DNA-mediated electron transfer between metallointercalators. Science 273:475–480

    Article  CAS  PubMed  Google Scholar 

  40. Delaney S, Pascaly M, Bhattarcharya P, Han K, Barton JK (2002) Oxidative damage by ruthenium complexes containing the dipyridophenazine ligand or its derivatives: a focus on intercalation. Inorg Chem 41:1966–1974

    Article  CAS  PubMed  Google Scholar 

  41. Ruba E, Hart JR, Barton JK (2004) Ru(bpy)2(L)]Cl2: Luminescent metal complexes that bind DNA base mismatches E. Rüba. Inorg. Chem 43:4570–4578

    Article  PubMed  Google Scholar 

  42. L. Zeng, Y. Ji. Liu, HH, R. Guan, L. Ji, H. Chao, (2015) Ruthenium(II) Complexes with 2-Phenylimidazo[4,5-f][1,10] phenanthroline Derivatives that Strongly Combat Cisplatin Resistant Tumor Cells, Nature Scientific Reports 6, Article number: 19449

  43. Liu J, Zou XH, Zhang QL, Mei. WJ, Liu JZ, Ji LN (2000) Synthesis, characterization and antitumor activity of a series of polypyridyl complexes. Metal-Based Drugs 7:343–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Puckett CA, Barton JK (2007) Methods to explore cellular uptake of ruthenium complexes. J Am Chem Soc 129:46–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma DL, Che CM, Siu FM, Yang M, Wong KY (2007) DNA binding and cytotoxicity of ruthenium (II) and rhenium (I) complexes of 2-amino-4-phenylamino-6-(2-pyridyl)-1, 3, 5-triazine. Inorg Chem 46:740–749

    Article  CAS  PubMed  Google Scholar 

  46. Pascu GL, Hotze ACG, Sanchez-Cano C, Kariuki BM, Hannon MJ (2007) Dinuclear ruthenium(II) triple-stranded helicates: luminescent supramolecular cylinders that bind and coil DNA and exhibit activity against cancer cell lines. Angew Chem 46(23):4374–4378

    Article  CAS  Google Scholar 

  47. Nagababu P, Shilpa M, Latha JNL, Bhatnagar I, Srinivas PNB, Kumar YP, Reddy KL, Satyanarayana S (2011) ) Synthesis, characterization, DNA binding properties, fluorescence studies and toxic activity of cobalt (III) and ruthenium (II) polypyridyl complexes. J Fluoresc 21:563–572

    Article  CAS  PubMed  Google Scholar 

  48. Kumar YP, Devi CS, Deepika N, Gabra MDN, Jain N, Srishailam A, Reddy KL, Satyanarayana S (2013) Synthesis, characterization, DNA binding properties, fluorescence studies and toxic activity of cobalt (III) and ruthenium (II) polypyridyl complexes. Trans. Met. Chem 38:811–819

    Article  CAS  Google Scholar 

  49. Deepika N, Kumar YP, Devi CS, Reddy PV, Srishailam A, Satyanarayana S (2013) Synthesis, characterization, and DNA binding, photocleavage, cytotoxicity, cellular uptake, apoptosis, and on–off light switching studies of Ru (II) mixed-ligand complexes containing 7-fluorodipyrido [3, 2-a: 2′, 3′-c] phenazine. J Biol Inorg Chem 18:751–766

    Article  CAS  PubMed  Google Scholar 

  50. Yamada M, Tanaka Y, Yoshimoto Y, Kuroda S, Shimao I (1992) Oxidative chlorination of 1,10-phenanthroline and its derivatives by phosphorus Pentachloride in Phosphoryl chloride. Bull Chem Soc Jpn 65:2007–2009

    Article  CAS  Google Scholar 

  51. Sullivan BP, Salmon DJ, Mayer TJ (1978) Mixed phosphine 2,2′-bipyridine complexes of ruthenium. Inorg Chem 17:3334–3341

    Article  CAS  Google Scholar 

  52. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208

    Article  CAS  Google Scholar 

  53. Reichmann ME, Rice SA, Thomas CA, Doty P (1954) A Further Examination of the Molecular Weight and Size of Desoxypentose. Nucleic Acid, J. Am. Chem. So 76:3047–3053

    Article  CAS  Google Scholar 

  54. McGhee JD, Von Hippel PH (1974) Theoretical aspects of DNA-protein interactions: cooperative and non-cooperative binding of large ligands to a one-dimensional heterogeneous lattice, J. Mol. Biol 86:469–489

    CAS  Google Scholar 

  55. Chaires JB, Dattagupta N, Crothers DM (1982) Self-association of daunomycin. Biochemistry 21:3927–3932

    Article  CAS  PubMed  Google Scholar 

  56. Cohen G, Eisenberg H (1969) Viscosity and sedimentation study of sonicated DNA–proflavine complexes, bio. Polymers 8:45–55

    CAS  Google Scholar 

  57. Barton JK, Raphael AL (1984) Photoactivated stereospecific cleavage of double-helical DNA by cobalt(III) complexes. J Am Chem Soc 106:2466–2468

    Article  CAS  Google Scholar 

  58. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  PubMed  Google Scholar 

  59. Vanessa P, Tanmaya J, Anna L, Cristina M, Julia S, Ingo O, Leone S, Stefano F, Gilles G (2012) Molecular and cellular characterization of the biological effects of ruthenium(II) complexes incorporating 2-pyridyl-2-pyrimidine-4-carboxylic acid. J Am Chem Soc 134:20376–20387

    Article  Google Scholar 

  60. Jones G, Willet P, Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 245:43–53

    Article  CAS  PubMed  Google Scholar 

  61. Zhang M, Yan F Jr, Yang F, Chen J, Zhen CY, Liang Y (2009) Chem Boil Interact 180:131

    Article  CAS  Google Scholar 

  62. Joseph R, Lakowicz GW (1973) Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry 12:4161–4170

    Article  Google Scholar 

  63. J.R. Lakowicz, (1983) Principles of Fluorescence Spectroscopy, Plenum Press York

  64. Chen M, Li H, Li Q, Xu Z (2010) Luminescence properties of [Ru(bpy) 2MDHIP] 2 + modulated by the introduction of DNA, copper(II) ion and EDTA. Spectrochimica Acta Part A 75:1566–1570

    Article  Google Scholar 

  65. Srishailam A, Kumar YP, Reddy PV, Nambigari N, Vuruputuri U, Singh SS, Satyanarayana S (2014) Cellular uptake, cytotoxicity, apoptosis, DNA-binding, photocleavage and molecular docking studies of ruthenium (II) polypyridyl complexes. J Photochem Photob.. B 132:111–123

    Article  CAS  Google Scholar 

  66. Devi CS, Kumar DA, Singh SS, Gabra MDN, Deepika N, Kumar YP, Satyanarayana S (2013) Synthesis, interaction with DNA, cytotoxicity, cell cycle arrest and apoptotic inducing properties of ruthenium (II) molecular “light switch” complexes. Eur. J. Med. Chem 64:410–421

    Article  Google Scholar 

  67. Li CH, Pin Y (2002) Green and red photoluminescence from ZnAl 2 O 4: Mn phosphors prepared by sol–gel method, chin. J. Chemistry 20:1529–1531

    Google Scholar 

  68. F. Gao, H. Chao, F. Zhou, Y. X. Yuan, B. Peng. L. N. J. Ji.(2006) DNA interactions of a functionalized ruthenium(II) mixed-polypyridyl complex [Ru(bpy)2ppd]2+.Inorg. Biochem, 100, 1487–1494.

  69. Satyanarayana S, Dabrowiak JC, Chaires JB (1992) Neither delta- nor lambda-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. Biochemistry 31:9319–9324

    Article  CAS  PubMed  Google Scholar 

  70. Hertzberg RP, Dervan PB (1982) Cleavage of double helical DNA by methidium-propyl-EDTA-iron(II). J. Am. Chem. Soc, 104:313–315

    Article  CAS  Google Scholar 

  71. Graham DR, Marshall LE, Reich KA, Sigman DS (1980) Cleavage of DNA by coordination complexes. Superoxide formation in the oxidation of 1,10-phenanthroline-cuprous complexes by oxygen - relevance to DNA-cleavage reaction. J Am Chem Soc 102:5419–5421

    Article  CAS  Google Scholar 

  72. Xu L, Xie YY, Zhong NJ, Liang ZH, He J, Huang HL, Liu YJ (2012) Minimization of the mean square velocity response of dynamic structures using an active-passive dynamic vibration absorbe. Trans. Met. Chem 37:197–207

    Article  CAS  Google Scholar 

  73. Zhang P, Chen J, Liang Y (2010) ) DNA binding, cytotoxicity, and apoptotic-inducing activity of ruthenium(II) polypyridyl complex. Acta Biochem Biophys Sin 42:440–449

    Article  CAS  Google Scholar 

  74. Liu YJ, Zeng CH, Liang ZH, Yao JH, Huang HL, Li ZZ, Wu FH (2010) Synthesis of ruthenium(II) complexes and characterization of their cytotoxicity in vitro, apoptosis, DNA-binding and antioxidant activity. Eur J Med Chem 45:3087–3095

    Article  CAS  PubMed  Google Scholar 

  75. Noor F, Wustholz A, Kinscherf R, Metzler-Nolte N (2005) A cobaltocenium-peptide bioconjugate shows enhanced cellular uptake and directed nuclear delivery. Angew Chem Int Ed 44:2429–2432

    Article  CAS  Google Scholar 

  76. Puckett CA, Ernst RJ, Barton JK (2010) Exploring the cellular accumulation of metal complexes. Dalton Trans 39:1159–1170

    Article  CAS  PubMed  Google Scholar 

  77. Puckett CA, Barton JK (2008) Mechanism of cellular uptake of a ruthenium polypyridyl complex. Biochemistry 47:11711–11716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tan C, Lai S, Wu S, Hu S, Zhou L (2010) Nuclear permeable ruthenium(II) β-carboline complexes induce autophagy to antagonize mitochondrial-mediated apoptosis. J. Med.Chem 53:7613–7624

    Article  CAS  PubMed  Google Scholar 

  79. Rajendiran V, Palaniandavar M, Periasamy VS, Akbarsha MA (2012) New [Ru(5,6-dmp/3,4,7,8-tmp)2(diimine)]2+ complexes: non-covalent DNA and protein binding, anticancer activity and fluorescent probes for nuclear and protein components. J Inorg Biochem 116:151–162

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to UGC and CSIR New Delhi for financial support and also grateful to CFRD Osmania university and School of chemistry university of Hyderabad, Prof. M.V. Rajashekaran University of Hyderabad and UGC-NRC University of Hyderabad.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Penumaka Nagababu or S. Satyanarayana.

Electronic supplementary material

ESM 1

(DOC 728 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, Y.P., Devi, C.S., Srishailam, A. et al. Studies on Photocleavage, DNA Binding, Cytotoxicity, and Docking Studies of Ruthenium(II) Mixed Ligand Complexes. J Fluoresc 26, 2119–2132 (2016). https://doi.org/10.1007/s10895-016-1908-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1908-y

Keywords

Navigation