Skip to main content
Log in

A Novel Fluorescent Probe for the Highly Selective and Sensitive Detection of Palladium in Aqueous Medium

  • RAPID COMMUNICATION
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Based on the Pd0-catalyzed Tsuji-Trost allylic oxidative insertion reaction, we developed a fluorescent probe PdL1 for sensing Pd0. As expected, probe PdL1 exhibited high selectivity and excellent sensitivity in both absorbance and fluorescence detection of Pd0 in CH3CH2OH/PBS (10 mM, pH = 7.4, 6:4, v/v) solution. The detection limit was calculated to be as low as 15 nM, which can meet the selective requirements for practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

References

  1. Negishi E, de Meijere A (2002) Handbook of organo palladium chemistry for organic synthesis. Wiley, New York

    Book  Google Scholar 

  2. Zeni G, Larock RC (2004) Synthesis of heterocycles via palladium π-olefin and π-alkyne chemistry. Chem Rev 104:2285–2310

    Article  CAS  PubMed  Google Scholar 

  3. Nicolaou KC, Bulger PG, Sarlah D (2005) Palladium-catalyzed cross-coupling reactions in total synthesis. Angew Chem Int Ed 44:4442–4489

    Article  CAS  Google Scholar 

  4. Lyons TW, Sanford MS (2010) Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem Rev 110:1147–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ravindra K, Bencs L, Van GR (2004) Platinum group elements in the environment and their health risk. Sci Total Environ 318:1–43

    Article  CAS  PubMed  Google Scholar 

  6. Tian ZD, Liu YC, Tian BZ, Zhang JL (2015) Synthesis and proton-induced fluorescence “OFF-ON” switching of a new D-π-A type pyran dye. Res Chem Intermed 41:525–533

    Article  CAS  Google Scholar 

  7. International Programme on Chemical on Chemical Safety (2002) Palladium; Environmental health criteria series 226. World Health Organization, Geneva

    Google Scholar 

  8. Yusop RM, Unciti-Broceta A, Johansson EMV, Sa’nchez-Martı’n RM, Bradley M (2011) Palladium-mediated intracellular chemistry. Nat Chem 3:239–243

    Article  CAS  PubMed  Google Scholar 

  9. Kielhorn J, Melber C, Keller D, Mangelsdorf I (2002) Palladium-A review of exposure and effects to human health. Int J Hyg Environ Health 205:417–432

    Article  CAS  PubMed  Google Scholar 

  10. Dimitrova B, Benkhedda K, Ivanova E, Adams F (2004) Flow injection on-line preconcentration of palladium by ion-pair adsorption in a knotted reactor coupled with electrothermal atomic absorption spectrometry. J Anal At Spectrom 19:1394–1396

    Article  CAS  Google Scholar 

  11. Meel KV, Smekens A, Behets M, Kazandjian P, Grieken RV (2007) determination of platinum, palladium, and rhodium in automotive catalysts using high-energy secondary target x-ray fluorescence spectrometry. Anal Chem 79:6383–6389

    Article  PubMed  Google Scholar 

  12. Locatelli C, Melucci D, Torsi G (2005) Determination of platinum-group metals and lead in vegetable environmental bio-monitors by voltammetric and spectroscopic techniques: critical comparison. Anal Bioanal Chem 382:1567–1573

    Article  CAS  PubMed  Google Scholar 

  13. Wang K, Lai G, Li Z, Liu M, Shen Y, Wang C (2015) A novel colorimetric and fluorescent probe for the highly selective and sensitive detection of palladium based on Pd(0) mediated reaction. Tetrahedron 71:7874–7878

    Article  CAS  Google Scholar 

  14. Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J (2008) A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem Soc Rev 37:1465–1472

    Article  CAS  PubMed  Google Scholar 

  15. Chen X, Pradhan T, Wang F, Kim JS, Yoon J (2012) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev 112:1910–1956

    Article  CAS  PubMed  Google Scholar 

  16. Yin J, Hu Y, Yoon J (2015) Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH. Chem Soc Rev 44:4619–4644

    Article  CAS  PubMed  Google Scholar 

  17. Santra M, Ko SK, Shin I, Ahn KH (2010) Fluorescent detection of palladium species with an O-propargylated fluorescein. Chem Commun 3964-3966

  18. Wang XH, Guo ZQ, Zhu SQ, Tian H, Zhu WH (2014) A naked-eye and ratiometric near-infrared probe for palladium via modulation of a π-conjugated system of cyanines. Chem Commun 13525-13528

  19. Liu W, Jiang J, Chen CY, Tang XL, Shi JM, Zhang P, Zhang KM, Li ZQ, Dou W, Yang LZ, Liu WS (2014) Water-soluble colorimetric and ratiometric fluorescent probe for selective imaging of palladium species in living cells. Inorg Chem 53:12590–12594

    Article  CAS  PubMed  Google Scholar 

  20. Chen H, Lin W, Yuan L (2013) Construction of a near-infrared fluorescence turn-on and ratiometric probe for imaging palladium in living cells. Org Biomol Chem 11:1938–1941

    Article  CAS  PubMed  Google Scholar 

  21. Li H, Fan J, Peng X (2013) Colourimetric and fluorescent probes for the optical detection of palladium ions. Chem Soc Rev 42:7943–7962

    Article  CAS  PubMed  Google Scholar 

  22. Li X, Zhang M, Liang H, et al. (2016) 4-(8-Quinolyl)amino-7-nitro-2, 1, 3-benzoxadiazole as a new selective and sensitive fluorescent and colorimetric pH probe with dual-responsive ranges in aqueous solutions. Spectrochim Acta A Mol Biomol Spectrosc 153:517–521

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Xiang K, Guo M, Tian B, Zhang J (2016) A coumarin-based fluorescent probe for the fast detection of Pd0 with low detection limit. Tetrahedron Lett 57:1451–1455

    Article  CAS  Google Scholar 

  24. Nagarapu L, Mallepalli R, Kumar UN, Venkateswarlu P, Bantu R, Yeramanchi L (2012) Synthesis of α1-oxindole-α-hydroxyphosphonates under catalyst-free conditions using polyethylene glycol (PEG-400) as an efficient and recyclable reaction medium. Tetrahedron Lett 53:1699–1700

    Article  CAS  Google Scholar 

  25. Zhou Y, Zhang J, Niu J, et al. (2013) A rhodamine-based fluorescent enhancement chemosensor for the detection of Cr3+ in aqueous media. Dyes Pigments 97:148–154

    Article  CAS  Google Scholar 

  26. Liu D, Pang T, Ma K, Jiang W, Bao X (2014) A new highly sensitive and selective fluorescence chemosensor for Cr3+ based on rhodamine B and a 4,13-diaza-18-crown 6-ether conjugate. RSC Adv 4:2563–2567

    Article  CAS  Google Scholar 

  27. Yan J, Wang X, Tan Q, Yao P, Tan J, Zhang L (2016) A colorimetric and fluorescent dual probe for palladium in aqueous medium and live cell imaging. Analyst 141:2376–2379

    Article  CAS  PubMed  Google Scholar 

  28. Jiang J, Jiang H, Liu W, Tang X, Zhou X, Liu W, Liu R (2011) A colorimetric and ratiometric fluorescent probe for palladium. Org Lett 13:4922–4925

    Article  CAS  PubMed  Google Scholar 

  29. Zhu B, Gao C, Zhao Y, Liu C, Li Y, Wei Q, Ma Z, Du B, Zhang X (2011) A 4-hydroxynaphthalimide-derived ratiometric fluorescent chemodosimeter for imaging palladium in living cells. Chem Commun 47:8656–8658

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Project of Colleges and Universities of Henan Province of China (15 A150049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Ma.

Electronic supplementary material

ESM 1

(DOC 979 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Wang, X., Sun, Y. et al. A Novel Fluorescent Probe for the Highly Selective and Sensitive Detection of Palladium in Aqueous Medium. J Fluoresc 26, 1917–1921 (2016). https://doi.org/10.1007/s10895-016-1906-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1906-0

Keywords

Navigation