Skip to main content
Log in

Quercetin-Iron Complex: Synthesis, Characterization, Antioxidant, DNA Binding, DNA Cleavage, and Antibacterial Activity Studies

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Quercetin-iron (II) complex was synthesized and characterized by elemental analysis, ultraviolet-visible spectrophotometry, fourier transform infrared spectroscopy, mass spectrometry, proton nuclear magnetic resonance spectroscopy, thermogravimetry and differential scanning calorimetry, scanning electron micrography and molar conductivity. The low molar conductivity value investigates the non-electrolyte nature of the complex. The elemental analysis and other physical and spectroscopic methods reveal the 1:2 stoichiometric ratio (metal:ligand) of the complex. Antioxidant study of the quercetin and its metal complex against 2, 2-di-phenyl-1-picryl hydrazyl radical showed that the complex has much more radical scavenging activity than free quercetin. The interaction of quercetin-iron (II) complex with DNA was determined using ultraviolet visible spectra, fluorescence spectra and agarose gel electrophoresis. The results showed that quercetin-iron (II) complex can intercalate moderately with DNA, quench a strong intercalator ethidium bromide and compete for the intercalative binding sites. The complex showed significant cleavage of pBR 322 DNA from supercoiled form to nicked circular form and these cleavage effects were dose-dependent. Moreover, the mechanism of DNA cleavage indicated that it was an oxidative cleavage pathway. These results revealed the potential nuclease activity of complex to cleave DNA. In addition, antibacterial activity of complex on E.coli and S. aureus was also investigated. The results showed that complex has higher antibacterial activity than ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CT-DNA:

Calf-thymus deoxyribonucleic acid

DPPH:

2, 2-di-phenyl-1-picryl hydrazyl

EB:

Ethidium bromide

ESI-MS:

Electrospray ionization mass spectra

FT-IR:

Fourier transform Infrared spectra

1H-NMR:

Proton Nuclear magnetic resonance

MTT:

3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide

NC DNA:

Nicked circular deoxyribonucleic acid

ROS:

Reactive oxidative species

SC DNA:

Supercoiled deoxyribonucleic acid

SEM:

Scanning electron micrography

SOD:

Superoxide dismutase

TG-DSC:

Thermogravimetry and differential scanning calorimetry

UV-Vis:

Ultraviolet Visible

References

  1. Wang BC, Qian JZ, Fan Y, Tan J (2014) The QSAR study of flavonoid-metal complexes scavenging OH free radical. J Mol Struct 1075:204–212

    Article  CAS  Google Scholar 

  2. Kawabata K, Mukai R, Ishisaka A (2015) Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability. Food Funct 6(5):1399–1417

    Article  CAS  PubMed  Google Scholar 

  3. Qin XR, Zhang MJ, Gao XN, Lin Y, Ma L, He SY (2009) Study on the Antibacterial Activity of Quercetin. Chem Bioengi 4:016

    Google Scholar 

  4. Cornard J, Merlin J (2003) Comparison of the chelating power of hydroxyflavones. J Mol Struct 651:381–387

    Article  Google Scholar 

  5. Shu Y, Liu Y, Li L, Feng J, Lou B, Zhou X, Wu H (2011) Antibacterial activity of quercetin on oral infectious pathogens. Afr J Microbiol Res 5(30):5358–5361

    CAS  Google Scholar 

  6. Ezzati Nazhad Dolatabadi J, Mokhtarzadeh A, Ghareghoran SM, Dehghan G (2014) Synthesis, Characterization and Antioxidant Property of Quercetin-Tb(III) Complex. Adv Pharma Bull 4(2):101–104

    Google Scholar 

  7. Ghosh N, Chakraborty T, Mallick S, Mana S, Singha D, Ghosh B, Roy S (2015) Synthesis, characterization and study of antioxidant activity of quercetin-magnesium complex. Spectrochim Acta A. Mol Biomol Spectros 151:807–813

    Article  CAS  Google Scholar 

  8. Bukhari SB, Memon S, Mahroof Tahir M, Bhanger MI (2009) Synthesis, characterization and antioxidant activity copper-quercetin complex. Spectrochim Acta A. Mol Biomol Spectros 71(5):1901–1906

    Article  Google Scholar 

  9. Monica Leopoldini NR, Sandro C, Marisosa T (2006) Iron chelation by the powerful antioxidant flavonoid quercetin. J Agric Food Chem 54:6343–6351

    Article  PubMed  Google Scholar 

  10. Chen W, Sun S, Cao W, Liang Y, Song J (2009) Antioxidant property of quercetin–Cr(III) complex: The role of Cr(III) ion. J Mol Struct 918(1–3):194–197

    Article  CAS  Google Scholar 

  11. Birjees Bukhari S, Memon S, Mahroof Tahir M, Bhanger MI (2008) Synthesis, characterization and investigation of antioxidant activity of cobalt–quercetin complex. J Mol Struct 892(1–3):39–46

    Article  CAS  Google Scholar 

  12. Dehghan G, Khoshkam Z (2012) Tin(II)–quercetin complex: synthesis, spectral characterisation and antioxidant activity. Food Chem 131(2):422–426

    Article  CAS  Google Scholar 

  13. Ferrer EG, Salinas MV, Correa MJ, Naso L, Barrio DA, Etcheverry SB, Lezama L, Rojo T, Williams PA (2006) Synthesis, characterization, antitumoral and osteogenic activities of quercetin vanadyl(IV) complexes. J Biol Inorg Chem 11(6):791–801

    Article  CAS  PubMed  Google Scholar 

  14. Jun T, Bochu W, Liancai Z (2007) Hydrolytic cleavage of DNA by quercetin zinc(II) complex. Bioorg Med Chem Lett 17(5):1197–1199

    Article  PubMed  Google Scholar 

  15. Jing Zhou LW, Wang J, Tang N (2001) Antioxidative and anti-tumour activities of solid quercetin metal(II) complexes. Transit Met Chem 26:57–63

    Article  Google Scholar 

  16. Tan J, Zhu L, Wang B (2009) DNA binding and cleavage activity of quercetin nickel(II) complex. Dalton Trans 24:4722–4728

    Article  Google Scholar 

  17. Ahmadi SM, Dehghan G, Hosseinpourfeizi MA, Dolatabadi JEN, Kashanian S (2011) Preparation, characterization, and DNA binding studies of water-soluble quercetin–molybdenum (VI) complex. DNA Cell Biol 30(7):517–523

    Article  CAS  PubMed  Google Scholar 

  18. Torreggiani A, Tamba M, Trinchero A, Bonora S (2005) Copper (II)–Quercetin complexes in aqueous solutions: spectroscopic and kinetic properties. J Mol Struct 744:759–766

    Article  Google Scholar 

  19. Bravo A, Anacona JR (2001) Metal complexes of the flavonoid quercetin: antibacterial properties. Transit Met Chem 26(1–2):20–23

    Article  CAS  Google Scholar 

  20. Wang B, Tan J, Zhu L (2010) Selective binding of small molecules to DNA: application and perspectives. Colloids Surf B 79(1):1–4

    Article  CAS  Google Scholar 

  21. Wang Q, Huang M, Huang Y, Zhang JS, Zhou GF, Zeng RQ, Yang XB (2014) Synthesis, characterization, DNA interaction, and antitumor activities of mixed-ligand metal complexes of kaempferol and 1, 10-phenanthroline/2, 2′-bipyridine. Med Chem Res 23(5):2659–2666

    Article  CAS  Google Scholar 

  22. Tan J, Wang B, Zhu L (2009) DNA binding, cytotoxicity, apoptotic inducing activity, and molecular modeling study of quercetin zinc(II) complex. Bioorg Med Chem 17(2):614–620

    Article  CAS  PubMed  Google Scholar 

  23. Selvaraj S, Krishnaswamy S, Devashya V, Sethuraman S, Krishnan UM (2012) Synthesis, characterization and DNA binding properties of rutin–iron complex. RSC Adv 2(7):2797–2802

    Article  CAS  Google Scholar 

  24. Williams WB, Cuvelier ME, Berset C (1995) Use of a Free Radical Method to Evaluate Antioxidant. Food Sci Technol 28:25–30

    Google Scholar 

  25. Zhou J, Wang LF, Wang J, Tang N (2001) Synthesis, characterization, antioxidative and antitumor activities of solid quercetin rare earth (III) complexes. J Inorg Biochem 83(1):41–48

    Article  CAS  PubMed  Google Scholar 

  26. Norden B, Tjerneld F (1982) Structure of methylene blue–DNA complexes studied by linear and circular dichroism spectroscopy. Biopolymers 21(9):1713–1734

    Article  CAS  PubMed  Google Scholar 

  27. Rodriguez Arguelles MC, Cao R, Garcia-Deibe AM, Pelizzi C, Sanmartin-Matalobos J, Zani F (2009) Antibacterial and antifungal activity of metal (II) complexes of acylhydrazones of 3-isatin and 3-(N-methyl) isatin. Polyhedron 28(11):2187–2195

    Article  Google Scholar 

  28. De Souza RF, De Giovani WF (2004) Antioxidant properties of complexes of flavonoids with metal ions. Redox Rep 9(2):97–104

    Article  CAS  PubMed  Google Scholar 

  29. Jovanovic SV, Steenken S, Tosic M, Marjanovic B, Simic MG (1994) Flavonoids as antioxidants. J Amer Chemi Soc 116(11):4846–4851

    Article  CAS  Google Scholar 

  30. Eftink MR, Ghiron CA (1981) Fluorescence quenching studies with proteins. Anal Biochem 114(2):199–227

    Article  CAS  PubMed  Google Scholar 

  31. Badea M, Olar R, Marinescu D, Uivarosi V, Aldea V, TO N (2010) Thermal stability of new vanadyl complexes with flavonoid derivatives as potential insulin-mimetic agents. J Therm Anal Calorim 99(3):823–827

    Article  CAS  Google Scholar 

  32. Chen C, Kasimu R, Xie X, Zheng Y, Ding W (2016) Optimised extraction of Erythronium Sibiricum bulb polysaccharides and evaluation of their bioactivities. Int J Biol Macromol 82:898–904

    Article  CAS  PubMed  Google Scholar 

  33. Neelakantan M, Marriappan S, Dharmaraja J, Jeyakumar T, Muthukumaran K (2008) Spectral, XRD, SEM and biological activities of transition metal complexes of polydentate ligands containing thiazole moiety. Spectro Acta Pt A-Mol Biomol Spectr 71(2):628–635

    Article  CAS  Google Scholar 

  34. Li Q, Yang P, Wang H, Guo M (1996) Diorganotin (IV) antitumor agent. (C 2 H 5) 2 SnCl 2 (phen)/nucleotides aqueous and solid-state coordination chemistry and its DNA binding studies. J Inorg Biochem 64(3):181–195

    Article  CAS  PubMed  Google Scholar 

  35. Oliveira Brett AM, Diculescu VC (2004) Electrochemical study of quercetin–DNA interactions: part I. Analysis in incubated solutions. Bioelectrochemistry 64(2):133–141

    Article  CAS  PubMed  Google Scholar 

  36. Plaper A, Golob M, Hafner I, Oblak M, Šolmajer T, Jerala R (2003) Characterization of quercetin binding site on DNA gyrase. Biochem Biophys Res Commun 306(2):530–536

    Article  CAS  PubMed  Google Scholar 

  37. Zhou CY, Xi XL, Yang P (2007) Studies on DNA binding to metal complexes of Sal2trien. Biochem Mosc 72(1):37–43

    Article  CAS  Google Scholar 

  38. Zhou CY, Zhao J, YB W, Yin CX, Pin Y (2007) Synthesis, characterization and studies on DNA-binding of a new Cu (II) complex with N 1, N 8-bis (l-methyl-4-nitropyrrole-2-carbonyl) triethylenetetramine. J Inorg Biochem 101(1):10–18

    Article  CAS  PubMed  Google Scholar 

  39. Sherman SE, Lippard SJ (1987) Structural aspects of platinum anticancer drug interactions with DNA. Chem Rev 87(5):1153–1181

    Article  CAS  Google Scholar 

  40. Kuwabara M, Yoon C, Goyne T, Thederahn T, Sigman DS (1986) Nuclease activity of 1, 10-phenanthroline-copper ion: reaction with CGCGAATTCGCG and its complexes with netropsin and EcoRI. Biochemistry 25(23):7401–7408

    Article  CAS  PubMed  Google Scholar 

  41. Neves A, Terenzi H, Horner R, Horn A Jr, Szpoganicz B, Sugai J (2001) Hydrolytic DNA cleavage promoted by a dinuclear iron (III) complex. Inorga. Chem Commun 4(8):388–391

    CAS  Google Scholar 

  42. Thederahn T, Spassky A, Kuwabara MD, Sigman DS (1990) Chemical nuclease activity of 5-phenyl-1, 10-phenanthroline-copper ion detects intermediates in transcription initiation by E. Coli RNA polymerase Biochemi Biophysi Res Commun 168(2):756–762

    Article  CAS  Google Scholar 

  43. Srivastava R (1981) Pseudotetrahedral Co (II), Ni (II) and Cu (II) complexes of N 1-(O-chlorophenyl)-2-(2′, 4′-dihydroxyphenyl)-2-benzylazomethine their fungicidal and herbicidal activity. Inorga. Chim Acta 56:L65–L67

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by National Natural Science Foundation of China (81373480, 81573529, 21372056), Chinese Government Scholarship (CSC No: 2014DFH792), Natural Science Foundation of Jiangsu Province (BK20130526), Sci. & Tech. Project from Traditional Chinese Medicine Bureau of Jiangsu Province (YB2015186), Zhenjiang Social Development Project (SH2014062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Tang.

Electronic supplementary material

ESM 1

(DOCX 554 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, A., Xu, X., Xia, L. et al. Quercetin-Iron Complex: Synthesis, Characterization, Antioxidant, DNA Binding, DNA Cleavage, and Antibacterial Activity Studies. J Fluoresc 26, 2023–2031 (2016). https://doi.org/10.1007/s10895-016-1896-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1896-y

Keywords

Navigation