Skip to main content
Log in

A Highly Selective and Sensitive Fluorescent Chemosensor for Aluminum Ions Based on Schiff Base

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

An efficient “off–on” type fluorescent chemosensor, (E)-N′-(4-(diethylamino)-2-hydroxybenzylidene)-2-hydroxybenzohydrazide (H 2 L), based on Schiff base for the determination of Al3+ has been designed, synthesized, and evaluated. Upon treated with Al3+, the fluorescence of H 2 L was enhanced 45-fold due to the chelation-enhanced fluorescence (CHEF) effect based on the formation of a 1:1 complex between the chemosensor and Al3+. Other metal ions, such as Na+, K+, Mg2+, Ca2+, Cu2+, Ga3+, Zn2+, Cr3+, Cd2+, Ag+, Fe3+, In3+, Mn2+, Pb2+, Co2+, and Ni2+ had little effect on the fluorescence. The results demonstrate that the chemosensor H 2 L has stronger affinity with Al3+ than other metal ions. The detection limit of H 2 L for sensing Al3+ is 3.60 × 10−6 M in EtOH–H2O (3:7, v/v) solution. And the recognizing behavior has been investigated both experimentally and computationally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lakowicz, JR (2002) Topics in fluorescence spectroscopy, Volume 4: Probe design and chemical sensing, Kluwer Academic Publishers, New York

  2. de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  3. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40

    Article  CAS  Google Scholar 

  4. Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 07:315–321

    Article  Google Scholar 

  5. Cronan CS, Walker WJ, Bloom PR (1986) Predicting aqueous aluminium concentrations in natural waters. Nature 324:140–143

  6. Walton JR (2007) An aluminum-based rat model for Alzheimer’s disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration. J Inorg Biochem 101:1275–1284

  7. Nayak P (2002) Aluminum: impacts and disease. Environl Res 89:101–115

    Article  CAS  Google Scholar 

  8. Fasman GD (1996) Aluminum and Alzheimer’s disease: model studies. Coord Chem Rev 149:125–165

    Article  CAS  Google Scholar 

  9. Ren J, Tian H (2007) Thermally stable merocyanine form of photochromic spiropyran with aluminum ion as a reversible photo-driven sensor in aqueous solution. Sensors 7:3166–3178

    Article  CAS  PubMed Central  Google Scholar 

  10. Barcelo J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48:75–92

    Article  CAS  Google Scholar 

  11. Krejpcio Z, Wójciak RW (2002) The influence of Al3+ ions on pepsin and trypsin activity in vitro. Pol J Environ Stud 11:251–254

    CAS  Google Scholar 

  12. Gupta VK, Jain AK, Maheshwari G (2007) Aluminum(III) selective potentiometric sensor based on morin in poly(vinyl chloride) matrix. Talanta 72:1469–1473

    Article  CAS  PubMed  Google Scholar 

  13. Gupta VK, Goyal RN, Jain AK, Sharma RA (2009) Aluminium (III)-selective PVC membrane sensor based on a Schiff base complex of N,N′-bis (salicylidene)-1, 2-cyclohexanediamine. Electrochim Acta 54:3218–3224

    Article  CAS  Google Scholar 

  14. Gupta VK, Singh AK, Ganjali MR, Norouzi P, Faridbod F, Mergu N (2013) Comparative study of colorimetric sensors based on newly synthesized Schiff bases. Sensors Actuators B Chem 182:642–651

    Article  CAS  Google Scholar 

  15. Farhadi K, Forough M, Molaei R, Hajizadeh S, Rafipour A (2012) Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sens Actuators B161:880–885

    Article  Google Scholar 

  16. Mobin SM, Sanghavi BJ, Srivastava AK, Mathur P, Lahiri GK (2010) Biomimetic sensor for certain phenols employing a copper(II) complex. Anal Chem 82:5983–5992

    Article  CAS  PubMed  Google Scholar 

  17. Sanghavi BJ, Srivastava AK (2013) Adsorptive stripping voltammetric determination of imipramine, trimipramine and desipramine employing titanium dioxide nanoparticles and an Amberlite XAD-2 modified glassy carbon paste electrode. Analyst 138:1395–1404

    Article  CAS  PubMed  Google Scholar 

  18. Goyal RN, Gupta VK, Chatterjee S (2009) A sensitive voltammetric sensor for Dete rmination of synthetic corticosteroid triamcinolone, abused for doping. Biosens Bioelectron 24:3562–3568

    Article  CAS  PubMed  Google Scholar 

  19. Soroka K, Vithanage RS, Phillips DA, Walker B, Dasgupta PK (1987) Fluorescence properties of metal complexes of 8-hydroxyquinoline-5-sulfonic acid and chromatographic applications. Anal Chem 59:629–636

    Article  CAS  Google Scholar 

  20. Gao CJ, Liu X, Jin XJ, Wu J, Xie YJ, Liu WS, Yao XJ, Tang Y (2013) A retrievable and highly selective fluorescent sensor for detecting copper and sulfide. Sensor Actuat B-CHEM 185:125–131

    Article  CAS  Google Scholar 

  21. Sahana A, Banerjee A, Das S, Lohar S, Karak D, Sarkar B, Mukhopadhyay SK, Mukherjee AK, Das D (2011) A naphthalene-based Al3+ selective fluorescent sensor for living cell imaging. Org Biomol Chem 9:5523–5529

    Article  CAS  PubMed  Google Scholar 

  22. Kim SH, Choi HS, Kim J, Lee SJ, Quang DT, Kim JS (2010) Novel optical/electrochemical selective 1,2,3-triazole ring-appended chemosensor for the Al3+ ion. Org Lett 12:560–563

    Article  CAS  PubMed  Google Scholar 

  23. Maity D, Govindaraju T (2010) Pyrrolidine constrained bipyridyl-dansyl click fluoroionophore as selective Al3+ sensor. Chem Commun 46:4499–4501

    Article  CAS  Google Scholar 

  24. Lin W, Yuan L, Feng J (2008) A dual-channel fluorescence-enhanced sensor for aluminum ions based on photoinduced electron transfer and excimer formation. Eur J Org Chem 3821:–3825

  25. Othman AB, Lee JW, Huh YD, Abidi R, Kim JS, Vicens J (2007) A novel pyrenyl-appended tricalix[4]arene for fluorescence-sensing of Al(III. Tetrahedron 63:10793–10800

    Article  Google Scholar 

  26. Wang YW, MX Y, YH Y, Bai ZP, Shen Z, Li FY, You XZ (2009) A colorimetric and fluorescent turn-on chemosensor for Al3+ and its application in bioimaging. Tetrahedron Lett 50:6169–6172

    Article  CAS  Google Scholar 

  27. Maity D, Govindaraju T (2010) Conformationally constrained (coumarin-triazolyl-bipyridyl) click fluoroionophore as a selective Al3+ sensor. Inorg Chem 49:7229–7231

    Article  CAS  PubMed  Google Scholar 

  28. Arduini M, Felluga F, Mancin F, Rossi P, Tecilla P, Tonellato U, Valentinuzzi N (2003) Aluminium fluorescence detection with a FRET amplified chemosensor. Chem Commun 1606:–1607

  29. Upadhyay KK, Kumar A (2010) Pyrimidine based highly sensitive fluorescent receptor for Al3+ showing dual signalling mechanism. Org Biomol Chem 8:4892–4897

    Article  CAS  PubMed  Google Scholar 

  30. Jeanson A, Béreau V (2006) Fluorescence detection of Al(III) using derivatives of oxazoline and imidazoline. Inorg Chem Commun 9:13–17

  31. Narayanaswamy R, Ng SM (2006) Fluorescence sensor using a molecularly imprinted polymer as a recognition receptor for the detection of aluminium ions in aqueous media. Analy Bioanal Chem 386:1235–1244

    Article  Google Scholar 

  32. Zhao Y, Lin Z, Liao H, Duan C, Meng QJ (2006) A highly selective fluorescent chemosensor for Al3+ derivated from 8-hydroxyquinoline. Inorg Chem Commun 9:966–968

    Article  CAS  Google Scholar 

  33. Wang L, Qin W, Tang XL, Dou W, Liu WS, Teng QF, Yao XJ (2010) A selective, cell-permeable fluorescent probe for Al3+ in living cells. Org Biomol Chem 8:3751–3757

    Article  CAS  PubMed  Google Scholar 

  34. Lu Y, Huang SS, Liu YY, He S, Zhao LC, Zeng XS (2011) Highly selective and sensitive fluorescent turn-on chemosensor for Al3+ based on a novel photoinduced electron transfer approach. Org Lett 13:5274–5277

    Article  CAS  PubMed  Google Scholar 

  35. Kim S, Noh JY, Kim KY, Kim JH, Kang HK, Nam SW, Kim SH, Park S, Kim C, Kim J (2012) Salicylimine-based fluorescent chemosensor for aluminum ions and application to bioimaging. Inorg Chem 51:3597–3602

    Article  CAS  PubMed  Google Scholar 

  36. Hau FKW, He XM, Lam WH, Yam VWW (2011) Highly selective ion probe for Al3+ based on Au(I)…Au(I) interactions in a bis-alkynyl calix[4]arene Au(I) isocyanide scaffold. Chem Commun 47:8778–8780

    Article  CAS  Google Scholar 

  37. Maity D, Govindaraju T (2012) A differentially selective sensor with fluorescence turn-on response to Zn2+ and dual-mode ratiometric response to Al3+ in aqueous media. Chem Commun 48:1039–1041

    Article  CAS  Google Scholar 

  38. Ma TH, Dong M, Dong YM, Wang YW, Peng Y (2010) A unique water-tuning dual-channel fluorescence-enhanced sensor for aluminum ions based on a hybrid ligand from a 1,1′-binaphthyl scaffold and an amino acid. Chem Eur J 16:10313–10318

    Article  CAS  PubMed  Google Scholar 

  39. Liu YW, Chen CH, Wu AT (2012) A turn-on and reversible fluorescence sensor for Al3+ ion. Analyst 137:5201–5203

    Article  CAS  PubMed  Google Scholar 

  40. Chen CH, Liao DJ, Wan CF, Wu AT (2013) A turn-on and reversible Schiff base fluorescence sensor for Al3+ ion. Analyst 138:2527–2530

    Article  CAS  PubMed  Google Scholar 

  41. Fu Y, Jiang XJ, Zhu YY, Zhou BJ, Zang SQ, Tang MS, Zhang HY, Maka TCW (2014) A new fluorescent probe for Al3+ based on rhodamine 6G and its application to bioimaging. Dalton Trans 43:12624–12632

    Article  CAS  PubMed  Google Scholar 

  42. Kumar NA, Kumar V, Prajapati R, Asthana SK, Upadhyay KK, Zhao JZ (2014) A remarkable effect of N,N-diethylamino functionality on the optoelectronic properties of a salicylimine-based probe for Al3+. Dalton T 43:5831–5839

    Article  Google Scholar 

  43. Frisch, MJ, Trucks, GW, Schlegel, HB, Scuseria, GE, Robb, MA, Cheeseman, J R, Scalmani, G, Barone, V, Mennucci, B, Petersson, GA, Nakatsuji, H, Caricato, M, Li, X, Hratchian, HP, Izmaylov, AF, Bloino, J, Zheng, G, Sonnenberg, JL, Hada, M, Ehara M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai, H, Vreven, J T, Montgomery, JA, Peralta, JE, Ogliaro, F, Bearpark, M, Heyd, JJ, Brothers, E, Kudin, KN, Staroverov, VN, Kobayashi, R, Normand, J, Raghavachari, K, Rendell, A, Burant, JC, Iyengar, SS, Tomasi, J, Cossi, M, Rega, N, Millam, J, Klene, M, Knox, JE, Cross, JB, Bakken, V, Adamo, C, Jaramillo, J, Gomperts, R, Stratmann, RE, Yazyev, O, Austin, AJ, Cammi, R, Pomelli, C, Ochterski, JW, Martin, RL, Morokuma, K, Zakrzewski, VG, Voth, GA, Salvador, P, Dannenberg, JJ, Dapprich, S, Daniels, AD, Farkas, O, Foresman, JB, Ortiz, JV, Cioslowski, J, Fox, DJ, 2009 Gaussian 09, Revision A. 01, Gaussian, Inc., Wallingford, CT

  44. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phy 82:270–283

    Article  CAS  Google Scholar 

  45. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phy 82:284–298

    Article  Google Scholar 

  46. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phy 82:299–310

    Article  CAS  Google Scholar 

  47. Peng XH, Tang XL, Qin WW, Dou W, Guo YL, Zheng JR, Liu WS, Wang DQ (2011) Aroylhydrazone derivative as fluorescent sensor for highly selective recognition of Zn2+ ions: syntheses, characterization, crystal structures and spectroscopic properties. Dalton T 40:5271–5277

    Article  CAS  Google Scholar 

  48. Hou FP, Huang L, Xi PX, Cheng J, Zhao XF, Xie GQ, Shi YJ, Cheng FJ, Yao XJ, Bai DC, Zeng ZZ (2012) A retrievable and highly selective fluorescent probe for monitoring sulfide and imaging in living cells. Inorg Chem 51:2454–2460

    Article  CAS  PubMed  Google Scholar 

  49. Wang LN, Qin WW, Tang XL, Dou W, Liu WS (2011) Development and Applications of Fluorescent Indicators for Mg2+ and Zn2+. J Phy Chem A 115:1609–1616

    Article  CAS  Google Scholar 

  50. Roy P, Dhara K, Manassero M, Ratha J, Banerjee P (2007) Selective fluorescence zinc ion sensing and binding behavior of 4-methyl-2,6-bis(((phenylmethyl)imino)methyl)phenol: biological application. Inorg Chem 46:6405–6412

    Article  CAS  PubMed  Google Scholar 

  51. Liu Y, Zhang N, Chen Y, Wang L (2007) Fluorescence sensing and binding behavior of aminobenzenesulfonamidoquinolino-β-cyclodextrin to Zn2+. Org Lett 9:315–318

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the National Natural Science Foundation of China (21471071, 21431002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Tang.

Electronic supplementary material

ESM 1

(DOCX 594 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Zang, P., Liu, W. et al. A Highly Selective and Sensitive Fluorescent Chemosensor for Aluminum Ions Based on Schiff Base. J Fluoresc 26, 2015–2021 (2016). https://doi.org/10.1007/s10895-016-1895-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1895-z

Keywords

Navigation