Skip to main content

Advertisement

Log in

Investigating the Energy Transfer from Dye Molecules to DNA Stabilized Au Nanoparticles

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Double-stranded DNA stabilized gold nanoparticles (Au NPs) are synthesized by chemical reduction method and characterized with different spectroscopic techniques such as UV-Visible absorption, Fourier transform infrared (FTIR), & circular-dichroism (CD) as well as transmission electron microscopy (TEM). These NPs show absorption maximum at 520 nm and size of most of the particles are of the order of 3.5 ± 1.0 nm. These Au NPs show crystalline nature as confirmed from electron diffraction pattern. The effect of formation of Au NPs on the macromolecule has been studied using infrared and circular dichroism spectroscopy. Formation of NPs causes conformational changes in the DNA molecules. These Au NPs are further used as resonant energy acceptor of fluorescence emission from dye molecules (Rhodamine 6G). The fluorescence intensity of Rhodamine 6G (R6G) is quenched in presence of Au NPs. The effect of DNA molecules on the fluorescence quenching and the rate of energy transfer from R6G molecules to Au NPs have been explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Krahne R, Morello G, Figuerola A, George C, Deka S, Manna L (2011) Physical properties of elongated inorganic nanoparticles. Phys Rep 501:75–221

    Article  CAS  Google Scholar 

  2. Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22:1781–1804

    Article  CAS  PubMed  Google Scholar 

  3. Stamplecoskie KG, Scaiano JC (2010) Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. J Am Chem Soc 132:1825–1827

    Article  CAS  PubMed  Google Scholar 

  4. Loo SL, Fane AG, Lim TT, Krantz WB, Liang YN, Liu X, Hu X (2013) Superabsorbent cryogels decorated with silver nanoparticles as a novel water technology for point-of-use disinfection. Environ Sci Technol 47:9363–9371

    Article  CAS  PubMed  Google Scholar 

  5. Sosa IO, Noguez C, Barrera RG (2003) Optical properties of metal nanoparticles with arbitrary shapes. J Phys Chem B 107:6269–6275

    Article  CAS  Google Scholar 

  6. Tong L, Wei H, Zhang S, Li Z, Xu H (2013) Optical properties of single coupled plasmonic nanoparticles. Phys Chem Chem Phys 15:4100–4109

    Article  CAS  PubMed  Google Scholar 

  7. Horie M, Fujita K, Kato H, Endoh S, Nishio K, Komaba LK, Nakamura A, Miyauchi A, Kinugasa S, Hagihara Y, Niki E, Yoshida Y, Iwahashi H (2012) Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: metal ion release, adsorption ability and specific surface area. Metallomics 4:350–360

    Article  CAS  PubMed  Google Scholar 

  8. Patel AS, Kumar A, Mohanty T (2013) Photoreduction altered work function of Au-TiO2 nanoparticles measured by scanning Kelvin probe microscopy. J Nanosci Nanotechnol 13:8217–8223

    Article  CAS  PubMed  Google Scholar 

  9. Huang X, Guo C, Zuo J, Zheng N, Stucky GD (2009) An assembly route to inorganic catalytic nanoreactors containing sub-10-nm gold nanoparticles with anti-aggregation properties. Small 5:361–365

    Article  CAS  PubMed  Google Scholar 

  10. Ding B, Deng Z, Yan H, Cabrini S, Zuckermann RN, Bokor J (2010) Gold nanoparticle self-similar chain structure organized by DNA origami. J Am Chem Soc 132:3248–3249

    Article  CAS  PubMed  Google Scholar 

  11. Dreaden EC, Alkilany AM, Huang X, Murphy JC, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779

    Article  CAS  PubMed  Google Scholar 

  12. Zhang X, Liu H, Pang Z (2011) Annealing process in the refurbishment of the plasmonic photonic structures fabricated using colloidal gold nanoparticles. Plasmonics 6:273–279

    Article  CAS  Google Scholar 

  13. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Patel AS, Sahoo H, Mohanty T (2014) Probing the Förster resonance energy transfer between fluorescent copper nanoclusters and cobalt complex. Appl Phys Lett 105:063112–063114

    Article  Google Scholar 

  15. Sen T, Haldar KK, Patra A (2008) Au nanoparticle-based surface energy transfer probe for conformational changes of BSA protein. J Phys Chem C 112:17945–17951

    Article  CAS  Google Scholar 

  16. Ray PC, Fan Z, Crouch RA, Sinha SS, Pramanik A (2014) Nanoscopic optical rulers beyond the FRET distance limit: fundamentals and applications. Chem Soc Rev 43:6370–6404

    Article  CAS  PubMed  Google Scholar 

  17. Sen T, Patra A (2008) Resonance energy transfer from rhodamine 6G to gold nanoparticles by steady-state and time-resolved spectroscopy. J Phys Chem C 112:3216–3222

    Article  CAS  Google Scholar 

  18. Oh E, Hong MY, Lee D, Nam SH, Yoon HC, Kim HS (2005) Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. J Am Chem Soc 127:3270–3271

  19. Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, Veggel FG, Reinhoudt DN, Möller M, Gittins DI (2002) Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects. Phys Rev Lett 89:203002–203004

    Article  CAS  PubMed  Google Scholar 

  20. Lin J, Zhou Z, Li Z, Zhang C, Wang X, Wang K, Gao G, Huang P, Cui D (2013) Biomimetic one-pot synthesis of gold nanoclusters/nanoparticles for targeted tumor cellular dual-modality imaging. Nanoscale Res Lett 8:170–177

    Article  PubMed  PubMed Central  Google Scholar 

  21. Qian H, Zhu M, Lanni E, Zhu Y, Bier ME, Jin R (2009) Conversion of polydisperse Au nanoparticles into monodisperse Au25 nanorods and nanospheres. J Phys Chem C 113:17599–17603

    Article  CAS  Google Scholar 

  22. Mello ML, Vidal BC (2012) Changes in the infrared microspectroscopic characteristics of DNA caused by cationic elements, different base richness and single-stranded form. PLoS One 7:43169–43112

    Article  Google Scholar 

  23. Hassanien R, Al-Said SAF, Siller L, Little R, Wright NG, Houlton A, Horrocks BR (2012) Smooth and conductive DNA-templated Cu2O nanowires: growth morphology, spectroscopic and electrical characterization. Nanotechnology 23:075601–075612

    Article  PubMed  Google Scholar 

  24. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553

    Article  CAS  Google Scholar 

  25. Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B: Biointerfaces 58:3–7

    Article  CAS  PubMed  Google Scholar 

  26. Hardzei M, Artemyev M, Molinari M, Troyon M, Sukhanova A, Nabiev I (2012) Comparative efficiency of energy transfer from CdSe–ZnS quantum dots or nanorods to organic dye molecules. ChemPhysChem 13:330–335

    Article  CAS  PubMed  Google Scholar 

  27. Artemyev M, Ustinovich E, Nabiev I (2009) Efficiency of energy transfer from organic dye molecules to CdSe − ZnS nanocrystals: Nanorods versus nanodots. J Am Chem Soc 131:8061–8065

    Article  CAS  PubMed  Google Scholar 

  28. Ramachandra S, Popovic ZD, Schuermann KC, Cucinotta F, Calzaferri G, Cola LD (2011) Förster resonance energy transfer in quantum dot–dye-loaded Zeolite L nanoassemblies. Small 7:1488–1494

    Article  CAS  PubMed  Google Scholar 

  29. Patel AS, Mohanty T (2014) Silver nanoclusters in BSA template: a selective sensor for hydrogen peroxide. J Mater Sci 49:2136–2143

    Article  CAS  Google Scholar 

  30. Saraswat S, Desireddy A, Zheng D, Guo L, HP L, Bigioni TP, Isailovic D (2011) Energy transfer from fluorescent proteins to metal nanoparticles. J Phys Chem C 115:17587–17593

    Article  CAS  Google Scholar 

  31. Sahoo H, Roccatano D, Hennig A, Nau WM (2007) A 10-Å spectroscopic ruler applied to short polyprolines. J Am Chem Soc 129:9762–9772

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Dr. Sobhan Sen and Dr. Pritam Mukhopadhyay of SPS, JNU for UV-Visible absorption and fluorescence study. The authors are also thankful to AIRF, JNU for FTIR, TEM, CD and TRFS characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mohanty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, A.S., Sahoo, H. & Mohanty, T. Investigating the Energy Transfer from Dye Molecules to DNA Stabilized Au Nanoparticles. J Fluoresc 26, 1849–1855 (2016). https://doi.org/10.1007/s10895-016-1878-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1878-0

Keywords

Navigation