Skip to main content
Log in

A Turn-on and Reversible Fluorescence Sensor for Zinc Ion Based on 4,5-Diazafluorene Schiff Base

  • SHORT COMMUNICATION
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new 4,5-diazafluorene-based fluorescent chemosensor has been synthesized by Schiff base condensation of 9,9-bis(3,5-dimethyl-4-aminophenyl)-4,5-diazafluorene with salicylaldehyde. The interaction of Schiff base with different metal ions has been studied over photofluorescent spectra. The results showed that Schiff base exhibited 194-fold enhancements in fluorescence at 465 nm after Zn2+ ions. Such fluorescent responses could be detected by naked eye under UV-lamp. The complex solution (L-Zn2+) exhibited reversibility with EDTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Reference

  1. Aziz AAA, Seda SH (2015) A novel fluorescent optode for recognition of Zn2+ ion based on N, N′-bis-(1-hydroxypheylimine) 2,5-Thiophenedicarobxaldehyde (HPTD) schiff base. J Fluoresc 25:1711–1719

    Article  PubMed  Google Scholar 

  2. Das DK, Goswami P, Medhi B (2014) N-benzoate-N′salicylaldehyde ethynelediamine: a new fluorescent sensor for Zn2+ ion by “off-on” mode. J Fluoresc 24:689–693

    Article  CAS  PubMed  Google Scholar 

  3. Hu Y, Liu Y, Kim G, Jun EJ, Swamy K, Kim Y, Kim S-J, Yoon J (2015) Pyrene based fluorescent probes for detecting endogenous zinc ions in live cells. Dyes Pigments 113:372–377

    Article  CAS  Google Scholar 

  4. Jana SK, Bera M, Puschmann H, Dalai S (2014) Sensing of Zn2+ ion by N-furfurylsalicylaldimine based on CHEF process. J Fluoresc 24:1245–1251

    Article  CAS  PubMed  Google Scholar 

  5. Ponnuvel K, Padmini V, Sribalan R (2016) A new tetrazole based turn-on fluorescence chemosensor for Zn2+ ions and its application in bioimaging. Sensors Actuators B Chem 222:605–611

    Article  CAS  Google Scholar 

  6. Ryu SY, Huh M, You Y, Nam W (2015) Phosphorescent zinc probe for reversible turn-on detection with bathochromically shifted emission. Inorg Chem 54:9704–9714

    Article  CAS  PubMed  Google Scholar 

  7. Su Z, Chen K, Guo Y, Qi H, Yang X-F, Zhao M (2010) A coumarin-based fluorescent chemosensor for Zn2+ in aqueous ethanol media. J Fluoresc 20:851–856

    Article  CAS  PubMed  Google Scholar 

  8. Bush AI, Pettingell WH, Multhaup G, Paradis M, Vonsattel J-P, Gusella JF, Beyreuther K, Masters CL, Tanzi RE (1994) Rapid induction of Alzheimer a beta amyloid formation by zinc. Science 265:1464–1467

    Article  CAS  PubMed  Google Scholar 

  9. Suh SW, Jensen KB, Jensen MS, Silva DS, Kesslak PJ, Danscher G, Frederickson CJ (2000) Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer's diseased brains. Brain Res 852:274–278

    Article  CAS  PubMed  Google Scholar 

  10. Koh J-Y, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016

    Article  CAS  PubMed  Google Scholar 

  11. Aoki S, Kagata D, Shiro M, Takeda K, Kimura E (2004) Metal chelation-controlled twisted intramolecular charge transfer and its application to fluorescent sensing of metal ions and anions. J Am Chem Soc 126:13377–13390

    Article  CAS  PubMed  Google Scholar 

  12. Nolan EM, Lippard SJ (2004) The zinspy family of fluorescent zinc sensors: syntheses and spectroscopic investigations. Inorg Chem 43:8310–8317

    Article  CAS  PubMed  Google Scholar 

  13. Walkup GK, Burdette SC, Lippard SJ, Tsien RY (2000) A new cell-permeable fluorescent probe for Zn2+. J Am Chem Soc 122:5644–5645

    Article  CAS  Google Scholar 

  14. Wong BA, Friedle S, Lippard SJ (2009) Solution and fluorescence properties of symmetric dipicolylamine-containing dichlorofluorescein-based Zn2+ sensors. J Am Chem Soc 131:7142–7152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aziz AAA, Seda SH (2014) Detection of trace amounts of Hg2+ in different real samples based on immobilization of novel unsymmetrical tetradentate Schiff base within PVC membrane. Sensors Actuators B Chem 197:155–163

    Article  Google Scholar 

  16. Salmon L, Thuéry P, Rivière E, Ephritikhine M (2006) Synthesis, structure, and magnetic behavior of a series of trinuclear Schiff base complexes of 5f (UIV, ThIV) and 3d (CuII, ZnII) ions. Inorg Chem 45:83–93

    Article  CAS  PubMed  Google Scholar 

  17. Zhang G, Ding A, Zhang Y, Yang L, Kong L, Zhang X, Tao X, Tian Y, Yang J (2014) Schiff base modified α-cyanostilbene derivative with aggregation-induced emission enhancement characteristics for Hg2+ detection. Sensors Actuators B Chem 202:209–216

    Article  CAS  Google Scholar 

  18. Zhu W, Yang L, Fang M, Wu Z, Zhang Q, Yin F, Huang Q, Li C (2015) New carbazole-based Schiff base: colorimetric chemosensor for Fe3+ and fluorescent turn-on chemosensor for Fe3+ and Cr3+. J Lumin 158:38–43

    Article  CAS  Google Scholar 

  19. Dong Y, Li J, Jiang X, Song F, Cheng Y, Zhu C (2011) Na+ triggered fluorescence sensors for Mg2+ detection based on a coumarin salen moiety. Org Lett 13:2252–2255

    Article  CAS  PubMed  Google Scholar 

  20. Pucci D, Aiello I, Bellusci A, Crispini A, Ghedini M, La Deda M (2009) Coordination induction of nonlinear molecular shape in mesomorphic and luminescent ZnII complexes based on salen-like frameworks. Eur J Inorg Chem 2009:4274–4281

    Article  Google Scholar 

  21. Udhayakumari D, Saravanamoorthy S, Ashok M, Velmathi S (2011) Simple imine linked colorimetric and fluorescent receptor for sensing Zn2+ ions in aqueous medium based on inhibition of ESIPT mechanism. Tetrahedron Lett 52:4631–4635

    Article  CAS  Google Scholar 

  22. Sako K, Mugishima Y, Iwanaga T, Toyota S, Takemura H, Watanabe M, Shinmyozu T, Shiotsuka M, Tatemitsu H (2011) Synthesis and redox properties of π-conjugated 4,5-diazafluorene derivatives incorporating 9-cyanomethylene moiety as an electron acceptor. Tetrahedron Lett 52:5865–5868

    Article  CAS  Google Scholar 

  23. Eckhard I, Summers L (1973) 4,5-diazafluoren-9-one from the oxidation of 1,10-phenanthroline by permanganate. Aust J Chem 26:2727–2728

    Article  CAS  Google Scholar 

  24. Lin H-Y, Cheng P-Y, Wan C-F, Wu A-T (2012) A turn-on and reversible fluorescence sensor for zinc ion. Analyst 137:4415–4417

    Article  CAS  PubMed  Google Scholar 

  25. Zhang X, Guo L, Wu F-Y, Jiang Y-B (2003) Development of fluorescent sensing of anions under excited-state intermolecular proton transfer signaling mechanism. Org Lett 5:2667–2670

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the research support from the National Natural Science Foundation of China (No. 21204033, No. 51103111), the Natural Science Foundation of Gansu Province (No. 1208RJYA016), Education Ministry of China (Program for NCET-12-0714), the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (2014-skllmd-11).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ShuJiang Zhang or Feng Wang.

Electronic supplementary material

ESM 1

(DOCX 324 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhang, S., Gong, C. et al. A Turn-on and Reversible Fluorescence Sensor for Zinc Ion Based on 4,5-Diazafluorene Schiff Base. J Fluoresc 26, 1555–1561 (2016). https://doi.org/10.1007/s10895-016-1877-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1877-1

Keywords

Navigation