Skip to main content
Log in

Synthesis and Assessment of DNA/Silver Nanoclusters Probes for Optimal and Selective Detection of Tristeza Virus Mild Strains

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Citrus Tristeza virus (CTV) is one of the most destructive pathogens worldwide that exist as a mixture of malicious (Sever) and tolerable (Mild) strains. Mild strains of CTV can be used to immunize healthy plants from more Severe strains damage. Recently, innovative methods based on the fluorescent properties of DNA/silver nanoclusters have been developed for molecular detection purposes. In this study, a simple procedure was followed to create more active DNA/AgNCs probe for accurate and selective detection of Tristeza Mild-RNA. To this end, four distinct DNA emitter scaffolds (C12, Red, Green, Yellow) were tethered to the Mild capture sequence and investigated in various buffers in order to find highly emissive combinations. Then, to achieve specific and reliable results, several chemical additives, including organic solvents, PEG and organo-soluble salts were used to enhance control fluorescence signals and optimize the hybridization solution. The data showed that, under adjusted conditions, the target sensitivity is enhanced by a factor of five and the high discrimination between Mild and Severe RNAs were obtained. The emission ratio of the DNA/AgNCs was dropped in the presence of target RNAs and I0/I intensity linearly ranged from 1.5 × 10−8 M to 1.8 × 10−6 M with the detection limit of 4.3 × 10−9 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bar-Joseph M, Batuman O, Roistacher CN (2010) The history to citrus tristeza virus – revisited. In: Complex CTV, Diseases T (eds) Karasev AV, Hilf ME. American Phytopathological Society, St. Paul, MN, pp. 3–26

    Google Scholar 

  2. Garnsey SM, Civerolo EL, Gumpf DJ, Paul C, Hilf ME, Lee RF, Brlansky RH, Yokomi RK (2005) Biological characterization of an international collection of Citrus tristeza virus (CTV) isolates, Proc 16th Congr Int Org Citrus Virologists 75–93.

  3. Lee RF, Niblett CL (2000) Citrus tristeza virus: strains, mild strain cross protection and other management strategies. Rev Hortic Mex 8:25–35

    Google Scholar 

  4. Roistacher CN, da Graça JV, Müller GW (2010) Cross protection against Citrus tristeza virus – a review, in Proceedings of the Seventeenth Conference International Organization of Citrus Virologists, eds Hilf ME, Timmer LW, Milne RG, da Graça JV, (Riverside, CA:IOCV), 3–27

  5. Permar TA, Garnsey SM, Gumpf DJ, Lee RF (1990) A monoclonal-antibody that discriminates strains of citrus tristeza virus. Phytopathology 80:224–228

    Article  Google Scholar 

  6. Narváez G, Skander BS, Ayllón MA, Rubio L, Guerri J, Moreno P (2000) A new procedure to differentiate citrus tristeza virus solates by hybridisation with digoxigenin-labelled cDNA probes. J Virol Methods 85:83–92

    Article  PubMed  Google Scholar 

  7. Gillings M, Broadbent P, Indsto J, Lee R (1993) Characterization of isolates and strains of citrus tristeza closterovirus using restriction analysis of the coat protein gene amplified by the polymerase chain reaction. J Virol Methods 44:305–317

    Article  CAS  PubMed  Google Scholar 

  8. Ayllón MA, Rubio L, Sentandreu V, Moya A, Guerri J, Moreno P (2006) Variations in two gene sequences of citrus tristeza virus after host passage. Virus Genes 32:119–128

    Article  PubMed  Google Scholar 

  9. Cheng X, Chen G, Rodriguez WR (2009) Micro-and nanotechnology for viral detection. Anal Bioanal Chem 393:487–501

    Article  CAS  Google Scholar 

  10. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Article  CAS  PubMed  Google Scholar 

  11. Dadmehr M, Hosseini M, Hosseinkhani S, Ganjali MR, Sheikhnejad R (2015) Label free colorimetric and fluorimetric direct detection of methylated DNA based on silver nanoclusters for cancer early diagnosi. Biosens Bioelectron 73:108–113

    Article  CAS  PubMed  Google Scholar 

  12. Ahmadzadeh Kermani H, Hosseini M, Dadmehr M, Ganjali MR (2016) Rapid restriction enzyme free detection of DNA methyltransfarase activity based on DNA-templated silver nanoclusters. Anal Bioanal Chem 16:4311–4318

  13. Budowle B, Allard MW, Wilson MR, Chakraborty R (2003) Forensics and mitochondrial DNA: applications, debates, and foundations. Annu Rev Genomics Hum Genet 4:119–141

    Article  CAS  PubMed  Google Scholar 

  14. Liu YQ, Zhang M, Yin BC, Ye BC (2012) Attomolar ultrasensitive microRNA detection by DNA-scaffolded silver-nanocluster probe based on isothermal amplification. Anal Chem 84:5165–5169

    Article  CAS  PubMed  Google Scholar 

  15. Yang SW, Vosch T (2011) Rapid detection of microRNA by a silver nanocluster DNA probe. Anal Chem 83:6935–6939

    Article  CAS  PubMed  Google Scholar 

  16. Obliosca JM, Liu C, Batson RA, Babin MC, Werner J (2013) DNA/RNA detection using DNA-templated few-atom silver nanoclusters. Biosensors 3:185–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yeh HC, Sharma J, Han JJ, Martinez JS, Werner JH (2011) A beacon of light—a new molecular probe for homogeneous detection of nucleic acid targets. IEEE Nanotechnol Mag 5:28–33

    Article  Google Scholar 

  18. Yeh HC, Sharma J, Yoo H, Martinez JS, Werner JH (2010) Photophysical characterization of fluorescent metal nanoclusters synthesized using oligonucleotides, proteins and small molecule ligands. Proc SPIE 7576:75760 N1–75760 N9

  19. Le Guevel X, Spies C, Daum N, Jung G, Schneider M (2012) Highly fluorescent silver nanoclusters stabilized by glutathione: a promising fluorescent label for bioimaging. Nano Res 5:379–387

    Article  CAS  Google Scholar 

  20. Vosch T, Antoku Y, Hsiang JC, Richards CI, Gonzalez JI, Dickson RM (2007) Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores. Proc Natl Acad Sci U S A 104:12616–12621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Richards CI, Choi S, Hsiang JC, Antoku Y, Vosch T, Bongiorno A, Tzeng YL, Dickson, RM (2008) Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc 130(15):5038–5039

  22. Sengupta B, Corley C, Cobb K, Saracino A, Jockusch S (2016) DNA scaffolded silver clusters: a critical study. Molecules 21:216

    Article  Google Scholar 

  23. Hames BD, Higgins SJ (1985) Nucleic acid hybridisation: a practical approach. IRL Press, Oxford

    Google Scholar 

  24. Semenov MA, Bolbukh TV, Krasnitskaya AA, Ya Maleyev V (1994) a study of hydration and structural state of human dna during long term storage. Probelems Cryobiol No 4

  25. Ugwu SO, Apte SP (2004) The effect of buffers on protein conformational stability. Pharm Technol 28:86–113

    CAS  Google Scholar 

  26. Zhao YQ, Fu JY, Liang AH, Yang BS (2009) The characterization for the binding of calcium and terbium to Euplotes octocarinatus centrin. Spectrochim Acta A 71:1756–1761

    Article  Google Scholar 

  27. Wenner JR, Bloomfield VA (1999) Buffer effects on EcoRV kinetics as measured by fluorescent staining and digital imaging of plasmid cleavage. Anal Biochem 268:201–212

    Article  CAS  PubMed  Google Scholar 

  28. Wolfe AR, Meehan T (1994) The effect of sodium ion concentration on intrastrand base-pairing in single-stranded DNA. Nucleic Acids Res 22(15):3147–3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roy KB, Antony T, Sakena A, Bohidar HB (1999) Ethanol-induced condensation of calf thymus DNA studied by laser light scattering. J Phys Chem B 103:5117–5121

    Article  CAS  Google Scholar 

  30. Hardwidge P, Pang YP, Zimmerman J, Vaghefi M, Hogrefe R, Maher LJ (2004) Phosphate crowding and DNA bending. In: Mohanty U, Stellwagen N (eds) Curvature and deformation of nucleic acids: recent advances, new paradigms. Am Chem Soc Symposium Series, vol 884. Oxford University Press, New York, NY

    Google Scholar 

  31. Forster S, Schmidt M (1995) Polyelectrolytes in solution. Adv Polym Sci 120:51–133

    Article  Google Scholar 

  32. Agbavwe C, Somoza MM (2011) Sequence-dependent fluorescence of cyanine dyes on microarrays. PLoS One 6:e22177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ke FY, Luu YK, Liang DH (2010) Characterizing DNA condensation and conformational changes in organic solvents. PLoS One 5:e13308

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kypr J, Kejnovska I, Renciuk D, Vorlíckova M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37:1713–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ellis RJ (2001) Macromolecular crowding: obvious, but underappreciated. Trends Biochem Sci 26:597–604

    Article  CAS  PubMed  Google Scholar 

  36. Hou S, Trochimczyk P, Sun L, Wisniewska A, Kalwarczyk T, Zhang X, Wielgus-Kutrowska B, Bzowska A, Holyst R (2016) How can macromolecular crowding inhibit biological reactions? The enhanced formation of DNA nanoparticles. Sci Rep 6

  37. Knowles DB, LaCroix AS, Deines NF, Shkel I, Record MT (2011) Separation of preferential interaction and excluded volume effects on DNA duplex and hairpin stability. J Proc Natl Acad Sci USA 108:12699–12704

    Article  CAS  Google Scholar 

  38. Luo C, Zhang Y, Zeng X, Zeng Y, Wang Y (2005) The role of poly(ethylene glycol) in the formation of silver nanoparticles. J Colloid Interface Sci 288:444–448

    Article  CAS  PubMed  Google Scholar 

  39. Kaneta T, Tanaka S, Yoshida H (1991) Improvement of resolution in the capillary electrophoretic separation of catecholamines by complex formation with boric acid and control of electroosmosis with a cationic surfactant. J Chromatogr A 538:385–391

    Article  CAS  Google Scholar 

  40. Buchmueller KL, Weeks KM (2004) Tris–borate is a poor counterion for RNA: a cautionary tale for RNA folding studies. Nucleic Acids Res 32:e184

    Article  PubMed  PubMed Central  Google Scholar 

  41. Williams LD, Maher LJ (2000) Electrostatic mechanisms of DNA deformation. Annu Rev Biophys Biomol Struct 29:497–521

    Article  CAS  PubMed  Google Scholar 

  42. Ruiz-Ruiz S, Moreno P, Guerri J, Ambrós S (2007) A real-time RT-PCR assay for detection and absolute quantification of Citrus tristeza virus in different plant tissues. J Virol Methods 145:96–105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of Science and Technology Park of University of Tehran for this research under grant number of (94056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokri, E., Hosseini, M., Faridbod, F. et al. Synthesis and Assessment of DNA/Silver Nanoclusters Probes for Optimal and Selective Detection of Tristeza Virus Mild Strains. J Fluoresc 26, 1795–1803 (2016). https://doi.org/10.1007/s10895-016-1871-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1871-7

Keywords

Navigation