Skip to main content
Log in

Fluorescent Sensing of both Fe(III) and pH Based on 4-Phenyl-2-(2-Pyridyl)Thiazole and Construction of OR Logic Function

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the presented paper we investigated a 2-pyridylthiazole derivative, 4-phenyl-2-(2-pyridyl)thiazole (2-PTP), as the molecular fluorescent switches. It was firstly found that 2-PTP could perform a “turn-on” fluorescent sensing for Fe(III) with selectivity and reversibility. A 2:1 stoichiometry between 2-PTP and Fe(III) was determined according to the molar ratio method. The binding constant was evaluated as (1.90 ± 0.05) × 105 (L/mol)2. The detection limit was found as 2.2 × 10−7 M (S/N = 3). Secondly, 2-PTP also exhibited a pH-dependent dual-emission. The pK a(2-PTP-H+/2-PTP) value was then estimated as 2.0. To explain the identical emission at 479 nm of both the Fe(III) coordinated form and the protonated form of the ligand, we proposed a “locked” conformation. Finally, combining the two external stimuli as inputs, an OR logic gate was constructed using the fluorescent emission at 479 nm as the output channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. de Silva AP, Gunaratne HQN, Gunnaugsson T, Huxley AJM, McCoy CP, Radmacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  2. Valuer B (2002) Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim

    Google Scholar 

  3. Feringa BL (2001) Molecular switches. Wiley-VCH, Weinheim

    Book  Google Scholar 

  4. Szacilowski K (2008) Digital information processing in molecular systems. Chem Rev 108:3481–3548

    Article  CAS  PubMed  Google Scholar 

  5. Gonçalves MST (2009) Fluorescent labeling of biomolecules with organic probes. Chem Rev 109:190–212

    Article  PubMed  Google Scholar 

  6. Terai T, Nagano T (2013) Small-molecule fluorophores and fluorescent probes for bioimaging. Pflugers Arch - Eur J Physiol 465:347–359

    Article  CAS  Google Scholar 

  7. Dai S, Schwendtmayer C, Schürmann P, Ramaswamy S, Eklund H (2000) Redox signaling in chloroplasts: cleavage of disulfides by an iron-sulfur cluster. Science 287:655–658

    Article  CAS  PubMed  Google Scholar 

  8. Beulter E (2004) “pumping” iron: the proteins. Science 306:2051–2053

    Article  Google Scholar 

  9. Kaplan CD, Kaplan J (2009) Iron acquisition and transcriptional regulation. Chem Rev 109:4536–4552

    Article  CAS  PubMed  Google Scholar 

  10. Theil EC, Goss DJ (2009) Living with iron (and oxygen): questions and answers about iron homeostasis. Chem Rev 109:4568–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Atkinson A, Winge DR (2009) Metal acquisition and availability in the mitochondria. Chem Rev 109:4708–4721

    Article  CAS  PubMed  Google Scholar 

  12. Levi S, Rovida E (2009) The role of iron in mitochondrial function. Biochim Biophys Acta 1790:629–636

    Article  CAS  PubMed  Google Scholar 

  13. Cabantchik ZI (2014) Labile iron in cells and body fluids. Physiology, pathology and pharmacology. Front Pharmacol 5: 45

  14. Sahoo SK, Sharma D, Bera RK, Crisponi G, Callan JF (2012) Iron(III) selective molecular and supramolecular fluorescent probes. Chem Soc Rev 41:7195–7227

    Article  CAS  PubMed  Google Scholar 

  15. Wang B, Hai J, Liu Z, Wang Q, Yang Z, Sun S (2010) Selective detection of iron(III) by rhodamine-modified Fe3O4 nanoparticles. Angew Chem Int Ed 49:4576–4579

    Article  CAS  Google Scholar 

  16. Lee MH, Giap TV, Kim SH, Lee YH, Kang C, Kim JS (2010) A novel strategy to selectively detect Fe(III) in aqueous media driven by hydrolysis of a rhodamine 6G Schiff base. Chem Commun 46:1407–1409

    Article  CAS  Google Scholar 

  17. Yang Z, She M, Yin B, Cui J, Zhang Y, Sun W, Li J, Shi Z (2011) Three rhodamine-based “off-on” chemosensors with high selectivity and sensitivity for Fe3+ imaging in living cells. J Organomet Chem 77:1143–1147

    Article  Google Scholar 

  18. Chen W-D, Gong W-T, Ye Z-Q, Lin Y, Ning G-L (2013) FRET-based ratiometric fluorescent probes for selective Fe3+ sensing and their applications in mitochondria. Dalton Trans 42:10093–10096

    Article  CAS  PubMed  Google Scholar 

  19. Sui B, Tang S, Liu T, Kim B, Belfield KD (2014) Novel BODIPY-based fluorescence turn-on sensor for Fe3+ and its bioimaging application in living cells. ACS Appl Mater Interfaces 6:18408–18412

    Article  CAS  PubMed  Google Scholar 

  20. Li G, Tang J, Ding P, Ye Y (2015) A rohdamine-benzimidazole based chemosensor for Fe3+ and its application in living cells. J Fluoresc. doi:10.1007/s10895-0151696-9

    Google Scholar 

  21. Zheng M-H, Jin J-Y, Sun W, Yan C-H (2006) A new series of fluorescent 5-methoxy-2-pyridylthiazoles with a pH-sensitive dual-emission. New J Chem 30:1196–1196

    Google Scholar 

  22. Zheng M-H, Zhang M-M, Li H-H, Jin J-Y (2012) Digital pH fluorescent sensing shown by small organic molecules. J Fluoresc 22:1421–1424

    Article  CAS  PubMed  Google Scholar 

  23. Zheng M-H, Sun W, Jin J-Y, Yan C-H (2014) Molecular keypad locks based on gated photochromism and enhanced fluorescence by protonation effects. J Fluoresc 14:1169–1176

    Article  CAS  Google Scholar 

  24. Zheng M-H, Hu X, Yang M-Y, Jin J-Y (2015) Ratiometrically fluorescent sensing of Zn(II) based on dual-emission of 2-pyridylthiazole derivatives. J Fluoresc 25:1831–1834

    Article  CAS  PubMed  Google Scholar 

  25. Khoroshilov GE, Yarotskii YV, Brovarets VS, Chernega AN (2010) Synthesis and structure of N-(aroylmethyl)-2-(4-aryl-2-thiazolyl)pyridinium bromides. Zh Org Farm Khim 8:57–60

    CAS  Google Scholar 

  26. Knott RF, Breckenridge JG (1954) Analogues of 2,2′-bipyridyl with isoquinoline and thiazole rings. Part I. Can J Chem 32:512–522

    Article  CAS  Google Scholar 

  27. Yang R, Li K, Wang K, Zhao F, Li N, Liu F (2003) Porphyrin assembly on β-cyclodextrin for selective sensing and detection of a zinc ion based on the dual emission fluorescence ratio. Anal Chem 75:612–621

    Article  CAS  PubMed  Google Scholar 

  28. Du J, Fan J, Peng X, Li H, Sun S (2010) The quinoline derivative of ratiometric and sensitive fluorescent zinc probe based on deprotonation. Sensors Actuators B 144:337–341

    Article  CAS  Google Scholar 

  29. Shortreed M, Kopelman R, Kuhn M, Hoyland B (1997) Fluorescent fiber-optic calcium sensor for physiological measurements. Anal Chem 68:1414–1418

    Article  Google Scholar 

Download references

Acknowledgments

We thanks the financial supports from the National Natural Science Foundation of China (NSFC 21062023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-Hua Zheng or Jing-Yi Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, MY., Zhao, XL., Zheng, MH. et al. Fluorescent Sensing of both Fe(III) and pH Based on 4-Phenyl-2-(2-Pyridyl)Thiazole and Construction of OR Logic Function. J Fluoresc 26, 1653–1657 (2016). https://doi.org/10.1007/s10895-016-1855-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1855-7

Keywords

Navigation