Skip to main content
Log in

Synthesis and Optical Properties of Novel Red-Emitting PbNb2O6: Eu3+ Phosphors

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Undoped and PbNb2O6:Eu3+ (1.0 ≤ x ≤ 6.0 mol%) phosphors were synthesized at 1100 °C for 3.5 h by the conventional solid state reaction method. Synthesized PbNb2O6:Eu3+ phosphors were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS) and Photoluminescence (PL) analyses. The PL spectra showed series of excitation peaks between 350 and 430 nm due to the 4f–4f transitions of Eu3+. For 395.0 nm excitation, emission spectra of Eu3+ doped samples were observed at 591 nm (orange) and 614 nm (red) due to the 5D0 → 7F1 transitions and 5D0 → 7F2 transitions, respectively. PL analysis results also showed that the emission intensity increased by increasing Eu3+ ion content. No concentration quenching effect was observed. The CIE chromaticity color coordinates (x,y) of the PbNb2O6:Eu3+ phosphors were found to be in the red region of the chromaticity diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Moura AP de, Oliveira LH de, Paris EC, Li MS, Andrés J, Varela JA, on Longo E, Rosa ILV (2011) Synthesis, structural and photophysical properties of Gd2O3:Eu3+ nanostructures prepared by a microwave sintering process. J Fluoresc 21:1431–1438.

  2. Vishwnath V, Srinivas M, Patel NP, Modi D, Murthy KVR (2016) Synthesis and photoluminescence studies of Eu(III), Er(III) doped strontium gadolinium tantalum oxide. J Fluoresc 26:277–282

    Article  CAS  PubMed  Google Scholar 

  3. Faulques E, Wery J, Dulieu B, Seybert C, Perry DL (1998) Synthesis, fabrication, and photoluminescence of CaF2 doped with rare earth ions. J Fluoresc 8:283–287

    Article  CAS  Google Scholar 

  4. Başak AS, Ekmekçi MK, Erdem M, Ilhan M, Mergen A (2016) Investigation of boron-doping effect on photoluminescence properties of CdNb2O6:Eu3+ phosphors. J Fluoresc. doi:10.1007/s10895-015-1759-y

    PubMed  Google Scholar 

  5. Yan B, Lin L, Wu J, Lei F (2011) Photoluminescence of rare earth phosphors Na0.5Gd0.5WO4:RE3+ and Na0.5Gd0.5(Mo0.75W0.25)O4:RE3+ (RE = Eu, Sm, Dy). J Fluoresc 21:203–211

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Endo T, Xie E, He D, Liu B (2004) Luminescence properties of Ca4GdO(BO3)3:Eu in ultraviolet and vacuum ultraviolet regions. Microelectron J 35:357–361

    Article  CAS  Google Scholar 

  7. Wang J, Song H, Kong X, Peng H, Sun B, Chen B, Zhang J, Xu W, Xia H (2003) Fluorescence properties of trivalent europium doped in various niobate codoped glasses. J Appl Phys 93:1482

    Article  CAS  Google Scholar 

  8. Wang Z, Yuan D, Xu D, Lv M, Cheng X, Pan L, Shi X (2003) Growth and optical properties of Eu3+-doped La3Ga5SiO14 single crystal. J Cryst Growth 255:348–352

    Article  CAS  Google Scholar 

  9. Phuruangrat A, Thongtem T, Thongtem S (2009) Preparation of ear-like, hexapod and dendritic PbS using cyclic microwave-assisted synthesis. Mater Lett 63:667–669

    Article  CAS  Google Scholar 

  10. Nanda KK, Kruis FE, Fissan H, Behera SN (2004) Effective mass approximation for two extreme semiconductors: band gap of PbS and CuBr nanoparticles. J Appl Phys 95:5035–5041

    Article  CAS  Google Scholar 

  11. Hoogland S, Sukhovatkin V, Howard I, Cauchi S, Levina L, Sargent EH (2006) A solution-processed 1.53 mu m quantum dot laser with temperature-invariant emission wavelength. Opt. Express 14:3273–3281

    Article  CAS  Google Scholar 

  12. Moreels I, Geyter BD, Thourhout DV, Hens Z (2009) Transmission of a quantum-dot-silicon-on-insulator hybrid notch filter. J Opt Soc Am B-Opt Phys 26:1243–1247

    Article  CAS  Google Scholar 

  13. Sargent EH (2005) Infrared quantum dots. Adv Mater 17:515–522

    Article  CAS  Google Scholar 

  14. Kim S, Marshall AR, Kroupa DM, Miller EM, Luther JM, Jeong S, Beard MC (2015) Air-stable and efficient PbSe quantum-dot solar cells based upon ZnSe to PbSe cation-exchanged quantum dots. Am Chem Soc 9:8157–8164

    CAS  Google Scholar 

  15. Luther JM, Law M, Beard MC, Song Q, Reese MO, Ellingson RJ, Nozik AJ (2008) Schottky solar cells based on colloidal nanocrystal films. Nano Lett 8:3488–3492

    Article  CAS  PubMed  Google Scholar 

  16. McDonald SA, Konstantatos G, Zhang SG, Cyr P. W, Klem EJD, Levina L, Sargent EH (2005) Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater 4:138–U114

    Article  CAS  PubMed  Google Scholar 

  17. Sargent EH (2009) Infrared photovoltaics made by solution processing. Nat Photonics 3:325–331

    Article  CAS  Google Scholar 

  18. Nozik AJ (2005) Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion. Inorg Chem 44:6893–6899

    Article  CAS  PubMed  Google Scholar 

  19. Rauch T, Boberl M, Tedde SF, Furst J, Kovalenko MV, Hesser GN, Lemmer U, Heiss W, Hayden O (2009) Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat Photonics 3:332–336

    Article  CAS  Google Scholar 

  20. Hollingsworth J, Klimov V (2004) Semiconductor and metal nanocrystals: synthesis and electronic and optical properties, chapter ‘Soft’ Chemical Synthesis and manipulation of semiconductor nanocrystals. Marcel Dekker, Inc, New York, pp. 1–64

    Google Scholar 

  21. Moriarty P (2001) Nanostructured materials. P Reports on Progress in Physics 64:297

    Article  CAS  Google Scholar 

  22. Hu R, Law WC, Lin G, et al. (2012) PEGylated phospholipid micelle encapsulated near-infrared PbS quantum dots for in vitro and in vivo bio-imaging. Theranostics 2:723–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fang M, Peng CW, Pang DW, Li Y (2012) Quantum dots for cancer research: current status, remaining issues, and future perspectives. Cancer Biol Med 9:151–163

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Murray CB, Sun S, Gaschler W, Doyle H, Betley TA, Kagan CR (2001) Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J Res Dev 45:47–55

    Article  CAS  Google Scholar 

  25. Pietryga JM, Schaller RD, Werder D, Stewart MH, Klimov VI, Hollingsworth AJ (2004) Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots. J Am Chem Soc 126:11752–11753

    Article  CAS  PubMed  Google Scholar 

  26. Xiao Q, Zhou Q, Zhang J, Ouyang L (2009) Photocatalytic decolorization of methylene blue over monoclinic pyrochlore-type Pb2Nb2O7 under visible light irradiation. J Alloys Compd 468:L9–L12

    Article  CAS  Google Scholar 

  27. Goodman G (1953) Ferroelectric properties of lead metaniobate. J Am Ceram Soc 36:368–1953

    Article  CAS  Google Scholar 

  28. Soejima J, Nagata K (2001) PbNb2O6 ceramics with tungsten bronze structure for low Qm piezoelectric material. Jpn J Appl Phys 40:5747

    Article  CAS  Google Scholar 

  29. Sahu KR, De U (2009) Thermal characterization of piezoelectric and non-piezoelectric lead meta-niobate. Thermochim Acta 490:75–77

    Article  CAS  Google Scholar 

  30. Roth RS (1959) Phase equilibrium relations in the binary system lead oxide niobium pentoxide. J Res Natl Bur Stand 62:27–38

    Article  CAS  Google Scholar 

  31. Francombe MH (1956) Polymorphism in lead metaniobate. Acta Crystallogr 9:683–684

    Article  Google Scholar 

  32. Lopatin SS, Medvedev ES, Raevskii IP (1985) Russ J Inorg Chem 30:2102–2106

    CAS  Google Scholar 

  33. Lu CH, Chyi N (1996) Fabrication of fine lead metaniobate powder using hydrothermal processes. Mater Lett 29:101–105

    Article  CAS  Google Scholar 

  34. Sahini MG, Grande T, Fraygola B, Biancoli A, Damjanovic D, Setter N (2014) Solid solutions of lead metaniobate-stabilization of the ferroelectric polymorph and the effect on the lattice parameters, dielectric, ferroelectric, and piezoelectric properties. J Am Ceram Soc 97:220–227

    Article  CAS  Google Scholar 

  35. Yamamoto T (1991) Relations between piezoelectric properties and microstructure in poled piezoelectric ceramics by applied uniaxial compressive stress. Jpn J Appl Phys 30:2256–2259

    Article  CAS  Google Scholar 

  36. Lee HS, Kimura T (1998) Effects of microstructure on the dielectric and piezoelectric properties of lead metaniobate. J Am Ceram Soc 81:3228–3236

    Article  CAS  Google Scholar 

  37. Subbarao EC, Hrizo J (1962) Solid solution based on ferroelectric PbNb2O6. J Am Ceram Soc 45:528–531

    Article  CAS  Google Scholar 

  38. Francombe MH (1960) The relation between structure and ferroelectricity in lead barium and barium strontium niobates. Acta Crystallogr 13:131–140

    Article  CAS  Google Scholar 

  39. Chong E, Chaklader ACD, Prasad E (1992) Sintering of PbNb2O6 with dopant. Diffus Defect Data Pt B 25&26:335–342

    Google Scholar 

  40. Chakraborty KR, Sahu KR, De A, De U (2010) Structural characterization of orthorhombic and rhombohedral lead meta-niobate samples. Integr Ferroelectr 120:102–113

    Article  CAS  Google Scholar 

  41. Speight JG (1999) Lange’s handbook of chemistry, Sixteenth edn. The McGraw-Hill Companies, New York

    Google Scholar 

  42. Sadiq I, Khan I, Aen F, Islam MU, Rana MU (2012) Influence of rare earth Ce3+ on structural, electrical and magnetic properties of Sr2+ based W-type hexagonal ferrite. Physica B 407:1256–1261

    Article  CAS  Google Scholar 

  43. Yamashita NN (1973) Luminescence centers of Ca(S: se) phosphors activated with impurity ions having s2 configuration. I. Ca(S:se):Sb3+ phosphors. J Phys Soc Jpn 35:1089–1097

    Article  CAS  Google Scholar 

  44. Du FP, Nakai Y, Tsuboi TJ, Huang YL, Seo HJ (2011) Luminescence properties and site occupations of Eu3+ ions doped in double phosphates Ca9R(PO4)7 (R = Al, Lu). J Mater Chem 21:4669–4678

    Article  CAS  Google Scholar 

  45. Huang CH, Chen TM, Liu WR, Chiu YC, Yeh YT, Jang SM (2010) A single-phased emission-tunable phosphor Ca9Y(PO4)7:Eu2+,Mn2+ with efficient energy transfer for white-light-emitting diodes. ACS Appl Mater Interfaces 2:259–264

    Article  CAS  Google Scholar 

  46. Zhu G, Ci Z, Xin S, Wen Y, Wang Y (2013) Warm white light generation from Dy3+ doped NaSr2Nb5O15 for white LEDs. Mater Lett 91:304–306

    Article  CAS  Google Scholar 

  47. Dieke GH (1968) Spectra and energy levels of rare earth ions in crystals. Interscience Publishers, New York

    Google Scholar 

  48. Blasse G (1986) Energy transfer between inequivalent Eu2+ ions. J Solid State Chem 62:207–211

    Article  CAS  Google Scholar 

  49. Blasse G, Grabmarier BC (1994) Luminescent materials. p. 99. Springer-Verlag, Berlin.

  50. Blasse G (1969) Energy transfer in oxidic phosphors. Philips Res Rep 24:131

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa İlhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İlhan, M., Ekmekçi, M.K., Demir, A. et al. Synthesis and Optical Properties of Novel Red-Emitting PbNb2O6: Eu3+ Phosphors. J Fluoresc 26, 1637–1643 (2016). https://doi.org/10.1007/s10895-016-1849-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1849-5

Keywords

Navigation