Skip to main content
Log in

Salicylyl Fluorene Derivatives as Fluorescent Sensors for Cu(II) Ions

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Two derivatives of fluorene containing salicylic acid groups are successfully synthesized by palladium-catalyzed coupling reactions and subsequent hydrolysis of salicylate esters. The compounds are characterized by various spectroscopic methods. In phosphate buffer (pH 8.0) solutions, these compounds are well soluble. They show maximum absorption wavelengths in the range of 304–330 nm and exhibit maximum emission wavelength around 420 and 430 nm with the quantum yields of 2.7 and 4.4 %, respectively. The compound with alkynyl salicylate groups (2) exhibits a selective fluorescence quenching towards Cu(II) and Fe(II) with a relatively similar sensitivity. The selectivity favoring Cu(II) over Fe(II) and other metal ions can be achieved upon the addition of 30 μM Triton X-100. The Cu(II) detection limit in solution phase is 1.47 ppb. The fluorescence signal recovery upon the addition of EDTA indicate a reversible complexation between 2 and Cu(II) ion. Fabrication of 2 on filter paper using a 50 μM solution in THF affords a naked-eye detection for Cu(II) and Fe(II) in aqueous media at picomole level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aragay G, Pons J, Merkoci A (2011) Chem Rev 111:3433

    Article  CAS  PubMed  Google Scholar 

  2. Li X, Gao X, Shi W, Ma H (2014) Chem Rev 114:590

    Article  CAS  PubMed  Google Scholar 

  3. Zhu H, Fan J, Wang B, Peng X (2015) Chem Soc Rev 44:4337

    Article  CAS  PubMed  Google Scholar 

  4. Lakowicz JR (2006) Principles of fluorescence spectroscopy. New York, Springer

    Book  Google Scholar 

  5. Dutta M, Das D (2012) Trends Anal Chem 32:113

    Article  CAS  Google Scholar 

  6. Waggoner DJ, Bartnikas TB, Gitlin JD (1999) Neurobiol Dis 6:221

    Article  CAS  PubMed  Google Scholar 

  7. Strausak D, Mercer JFB, Dieter HH, Stremmel W, Multhaup G (2001) Brain Res Bull 55:175

    Article  CAS  PubMed  Google Scholar 

  8. Kumar N, Low PA (2004) J Neurol 251:747

    Article  PubMed  Google Scholar 

  9. Halfdanarson TR, Kumar N, Li C-Y, Phyliky RL, Hogan WJ (2008) Eur J Haematol 80:523

    Article  CAS  PubMed  Google Scholar 

  10. Sahin O, Akceylan E (2014) Tetrahedron 70:6944

    Article  CAS  Google Scholar 

  11. Yeh J-T, Chen W-C, Liu S-R, Wu S-P (2014) New J Chem 35:4434

    Article  Google Scholar 

  12. Luxami V, Gupta AS, Paul K (2014) New J Chem 35:2841

    Article  Google Scholar 

  13. Fu Y, Feng Q-C, Jiang X-J, Xu H, Li M, Zang S-Q (2014) Dalton Trans 43:5815

    Article  CAS  PubMed  Google Scholar 

  14. Sundari R, Ahmad M, Heng LY (2006) Sensors Actuators B Chem 113:201

    Article  CAS  Google Scholar 

  15. Sirilaksanapong S, Sukwattanasinitt M, Rashatasakhon P (2012) Chem Commun 48:293

    Article  CAS  Google Scholar 

  16. Auttapornpitak P, Sukwattanasinitt M, Rashatasakhon P (2013) Sensors Actuators B Chem 178:296

    Article  CAS  Google Scholar 

  17. Niamnont N, Kimpitak N, Tumcharern G, Rashatasakhon P, Sukwattanasinitt M (2013) RSC Adv 3:25215

    Article  CAS  Google Scholar 

  18. Earmrattana N, Sukwattanasinitt M, Rashatasakhon P (2012) Dyes Pigments 93:1428

    Article  CAS  Google Scholar 

  19. Sam-ang P, Raksasorn D, Sukwattanasinitt M, Rashatasakhon P (2014) RSC Adv 4:58077

    Article  CAS  Google Scholar 

  20. Fracaroli AM, Furukawa H, Suzuki M, Dodd M, Okajima S, Gandara F, Reimer JA, Yaghi OM (2014) J Am Chem Soc 136:8863

    Article  CAS  PubMed  Google Scholar 

  21. Liu S, Zhang K, Lu J, Zhang J, Yip H-L, Huang F, Cao Y (2013) J Am Chem Soc 135:15326

    Article  CAS  PubMed  Google Scholar 

  22. Mallick A, Mandal MC, Haldar B, Chakrabarty A, Das P, Chattopadhyay N (2006) J Am Chem Soc 128:3126

    Article  CAS  PubMed  Google Scholar 

  23. Liana DD, Raguse B, Gooding JJ, Chow E (2012) Sensors 12:11505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (AM1006A-56), the Ratchadapiseksomphot Endowment Fund of Chulalongkorn University (RES560530125-AM), and the Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program on Center of Excellence Network. CK thanks the 90th Anniversary of Chulalongkorn University Fund for his scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paitoon Rashatasakhon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaokeaw, C., Sukwattanasinitt, M. & Rashatasakhon, P. Salicylyl Fluorene Derivatives as Fluorescent Sensors for Cu(II) Ions. J Fluoresc 26, 745–752 (2016). https://doi.org/10.1007/s10895-016-1766-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1766-7

Keywords

Navigation