Skip to main content
Log in

PL Properties of Sr2CeO4 With Eu3+ and Dy3+ for Solid State Lighting Prepared by Precipitation Method

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Photoluminescence studies of pure and Dy3+, Eu3+ doped Sr2CeO4 compounds are presented by oxalate precipitation method for solid state lighting. The prepared samples also characterized by XRD, SEM (EDS) and FTIR spectroscopy. The pure Sr2CeO4 compound displays a broad band in its emission spectrum when excited with 280 nm wavelength, which peaks centered at 488 nm, which is due to the energy transfer between the molecular orbital of the ligand and charge transfer state of the Ce4+ ions. Emission spectra of Sr2CeO4 with different concentration of Dy3+ ions under near UV radiation excitation, shows that intensity of luminescence spectra is found to be affected by Dy3+ ions, and it increases with adding some percentages of Dy3+ ions. The maximum doping concentration for quenching is found to be Dy3+ = 0.2 mol % to Sr2+ions. The observed broad spectrum from 400 to 560 nm is mainly due to CT transitions in Sr2CeO4 matrix and some fractional contribution of transitions between 4F9/26H15/2 of Dy3+ ions. Secondly the effect of Eu3+ doping at the Sr2+ site in Sr2CeO4, have been studied. The results obtained by doping Eu3+ concentrations (0.2 mol% to 1.5 mol%), the observed excitation and emission spectra reveal excellent energy transfer between Ce4+ and Eu3+. The phenomena of concentration quenching are explained on the basis of electron phonon coupling and multipolar interaction. This energy transfer generates white light with a color tuning from blue to red, the tuning being dependent on the Eu3+ concentration. The results establish that the compound Sr2CeO4 with Eu3+ = 1 mol% is an efficient “single host lattice” for the generation of white lights under near UV-LED and blue LED irradiation. The commission internationale de I’Eclairage (CIE) coordinates were calculated by Spectrophotometric method using the spectral energy distribution of prepared phosphors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Fu S-L, Yin T, Chi F (2007) Chin Phys 16(10):3129–3133

    Article  CAS  Google Scholar 

  2. Zambare PZ, Girase KD, Murthy KVR, Mahajan OH (2013) Adv Mat Lett 4(7):577–581

    Google Scholar 

  3. Li H et al (2014) Opt Mater 36:1883–1889

    Article  CAS  Google Scholar 

  4. Danielson E, Devenney M, Giaquinta DM, Golden JH, Haushalter RC, McFarland EW, Poojary DM, Reaves CM, Weinberg (1998) Science 279:837–839

    Article  CAS  PubMed  Google Scholar 

  5. Seema R, Nandakumar K (2011) A New synthetic pathway of Sr2CeO4 phosphor and its characterization. J Lumin 131:2181–2184

    Article  CAS  Google Scholar 

  6. Sukwon J, Yun Chan K, Jung Hyeun K (2007) J Mater Sci 42:9783–9794

    Article  Google Scholar 

  7. Suresh K,Poornachandra Rao NV and Murthy KVR (2014) Bull. Mater. Sci., Vol. 37, No. 6, pp. 1191–1195, Indian Academy of Sciences

  8. Zambare PZ, Zambare AP, Murthy KVR, Mahajan OH (2011) Ad Applied Sci Res 2(3):520–524

    CAS  Google Scholar 

  9. Walter Ratna Kumar B, Murthy KVR, Subba Rao B and Mahamuda Shaik IJSID1 (2011) (2), 145–150

  10. Yeon woo et al. (2015) Ceramic International 41 1249–1254

  11. Xue S-W, Wang E-G, Zhang JC (2011) Phys B 20(7):078105–078108

    Google Scholar 

  12. Masalove AA, Vyagin OG, Ganina II, Malyukin YV (2008) Funct Mater 15(4):470–474

    Google Scholar 

  13. Zhang C, Shi J, Yang X, Lu L, Wang X (2010) J Rare Earths 28(4):513–518

    Article  Google Scholar 

  14. Takyuki H, Yusuke K (2004) J Phys Chem B 108(34):12763–12769

    Article  Google Scholar 

  15. Ye S, Xiao F, Pan YX, Ma YY, Zhang QY (2010) Mater Sci Eng R 71:1–34

    Article  Google Scholar 

  16. San Jose (2013) CA 95134 USA,LED Engine, 651 River Oaks Parkway, sales@ledengine.com

  17. Na Z, Wang D, Lan L, Yanshuang M, Xiaosang Z, Ming N (2006) J Rare Earth 24:294–297

    Article  Google Scholar 

  18. Xu Y, Chen L, Li Y, Song G, Wang Y, Zhuang W, Long Z (2008) Appl Phys Lett 92:021129

    Article  Google Scholar 

  19. Yan W, Yuhua W, Feng Z, Bitao L (2011) Mater Chem Phys 129:1171–1175

    Article  Google Scholar 

  20. Pawade VB, Dhobale NS, Dhobale SJ (2012) Solid State Sci 14:607–610

    Article  CAS  Google Scholar 

  21. Pawade VB and Dhobale SJ (2011) The J. of biological and Chemical Luminescence

  22. Bizari G, and Moine B (2006) Optical Material, 587–591

  23. Zhu H, Yang H, Fu W, Zhu P, Li M, Li Y, Sui Y, Liu S, Zou G (2008) Mater Lett 62:784–786

    Article  CAS  Google Scholar 

  24. Matolin V, Matolinova I, Sadlacek L, Prince KC, Skala T (2009) Nanotechnology 20:1–7

    Article  Google Scholar 

  25. Ferrar JL, Pires AM, Serra OA, Davolos MR (2011) J Lumin 131:25–29

    Article  Google Scholar 

  26. Sankara R, Subba Rao GV (2011) J Electrochem Soc 158(10):J287–J290

    Article  Google Scholar 

  27. Suresh K et al (2013) J Lumin 133:96–101

    Article  CAS  Google Scholar 

  28. Lili S, Hongiie Z, Li C, Qiang S (2011) RSC Adv 1:298–304

    Article  Google Scholar 

  29. Haiyan JIAO, Yuhua WANG, Jiachi ZHANG (2009) J Phys Conf Ser 152:012089

    Article  Google Scholar 

  30. Shinoya M and Yen W M (1999) Phosphor HandBook CRC Press Boca Raton

  31. Choi S-H, Kim N-H, Yang- Hoon Y, Sung-Churl C (2006) J Cer Proc Res 7(1):62–65

    Google Scholar 

  32. Jiang YD, Zhang F, Summers CJ (1999) Appl Phys Lett 74:1677

    Article  CAS  Google Scholar 

  33. Xing D, Gong ML, Qui X, Yang D, Cheah Kok W (2006) J Rare Earth 24:289–293

    Article  Google Scholar 

  34. Shriver DF, Akins PW, Langford CH (1990) Inorganic chemistry, WH. Freeman and company, New York, NY

  35. Jie L, Xi L, Hu S, Yingchun L, Yuying H (2013) Opt Mater 35:2309–2313

    Article  Google Scholar 

  36. Aitasalo T, Holsa J, Lastusaari M, Niityykoski J, Pelle F (2005) Optic Mater 27:1511

    Article  CAS  Google Scholar 

  37. Paulose PI, Jose G, Thomas V et al (2003) J Phys Chem Solids 64:841

    Article  CAS  Google Scholar 

  38. Yang W, Chen T (2007) Appl Phys Lett 90:171908

    Article  Google Scholar 

  39. Kim Anha T, Strek W (1988) J Lumin 42:205

    Article  Google Scholar 

  40. Kim JS, Jeon PE, Park YH, Choi JC, Park HL (2004) Appl Phys Lett 85(17):3696

    Article  CAS  Google Scholar 

  41. Fraser J. Douglas,a Carlos Renero-Lecuna, Robert D. Peacock, Rafael Valiente, Donald A. MacLarenc and Mark Murriea (2012) Electronic Supplementary Material (ESI) for CrystEngComm, the Royal Society of Chemistry

  42. Haifeng L et al (2015) Mater Lett 139:258–261

    Article  Google Scholar 

  43. Som S, Kunti AK, Vinod K, Vijay K, Dutta S, Chowdhury M, Sharma SK, Terblans JJ, Swart HC (2014) J Appl Phys 115:193101

    Article  Google Scholar 

  44. Huang K-W, Chen W-T, Chu C-I, Hu S-F, Sheu H-S, Cheng B-M, Chen J-M, Liu R-S (2012) Chem Mater 24:2220

    Article  CAS  Google Scholar 

  45. Dalton Trans (2014) 43, 8814

  46. RSC Advances (2012) 2 10859–10868

  47. Condon SU, Shortley GH (1963) The theory of atomic spectra. Cambridge University Press, England

    Google Scholar 

  48. Dutta S, Som S, Sharma SK (2013) Dalton Trans 42:9654

    Article  CAS  PubMed  Google Scholar 

  49. Dexter DL (1953) J Chem Phys 21:836

    Article  CAS  Google Scholar 

  50. Dubey V, Kaur J, Agrawal S (2014) Res. Chem. Intermed. 10.1007/s11164-014-1563-3

  51. Fang Y-C, Chu S-Y, Kao P-C, Chuang Y-M, Zeng Z-L (2011) J Electrochem Soc 158:J1

    Article  CAS  Google Scholar 

  52. Hehlen MP, Brik MG, Kramer KW (2013) J Lumin 136:221–239

    Article  CAS  Google Scholar 

  53. Agrawal S, Dubey V (2014) Jour Rad Res Appl Sci 7(4):601–606

  54. Dubey V, Kaur J, Agrawal S (2014) Res Chem Intermed. doi:10.1007/s11164-014-1563-3

  55. Dubey V, Kaur J, Agrawal S, Suryanarayana NS, Murthy KVR (2014) Superlat Microstruc 67:156–171

  56. Kaur J, Parganiha Y, Dubey V, Singh D, Chandrakar D (2014) Superlat Microstruc 73:38–53

  57. Dubey V, Kaur J, Agrawal S, Suryanarayana NS, Murthy KVR (2013) Optik – Int. J.Light Electron Opt. doi:10.1016/j.ijleo.2013.03.153

  58. Parganiha Y, Kaur J, Dubey V, Murthy KVR (2015) Mater Sci Semicond Process 31:715–719

Download references

Acknowledgments

One of the authors R. S. Ukare is very much thankful to University Grant Commission, Pune, for providing financial grant under Faculty Development Programme (FDP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vikas Dubey or S. J. Dhoble.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ukare, R.S., Dubey, V., Zade, G.D. et al. PL Properties of Sr2CeO4 With Eu3+ and Dy3+ for Solid State Lighting Prepared by Precipitation Method. J Fluoresc 26, 791–806 (2016). https://doi.org/10.1007/s10895-016-1765-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1765-8

Keywords

Navigation