Journal of Fluorescence

, Volume 26, Issue 2, pp 679–688 | Cite as

Light-Enhanced Fluorescence of Multi-Level Cavitands Possessing Pyridazine Upper rim

  • Tibor Zoltan Janosi
  • Geza Makkai
  • Timea Kegl
  • Peter Matyus
  • Laszlo Kollar
  • Janos Erostyak
ORIGINAL ARTICLE

Abstract

Completely different fluorescence behaviour of cavitands based on a same calix[4]resorcinarene compound was observed. While the fluorescence intensity of the parent compound, tetramethyl-cavitand (1) slowly faded as a result of UV-light exposure, the emission of the three-level cavitand with pyridazine moieties at the upper rim (5a) was enhanced by the excitation in the UV-region. The structure of fluorescence emission (characterized by excitation-emission matrices) and the absorption of 5a remained unaltered. The analysis of fluorescence decay curves reveals the presence of two separated components assigned to two individual emitting species. The measured significant increase of the average lifetime and quantum yield is the consequence of the UV-light induced transition between the different states of 5a. These observations can be explained by the structural difference between 5a and 1. As a counterpart of the naked cavitand (1) with methyl substituents at the upper rim only, 5a has three additional moieties benzene, triazole and pyridazine levels. Computational studies proved the existence of two conformational isomers of 5a. Upon ultraviolet light excitation a “dark” to “light” conformational transition occurs between the two isomers. This hypothesis was confirmed by anisotropy decay measurements.

Keywords

Triazole pyridazine cavitand Fluorescence enhancement Conformational isomer Internal fluorescence quenching Photochromism Photoswitchable material 

Supplementary material

10895_2015_1754_MOESM1_ESM.doc (33.6 mb)
ESM 1(DOC 34365 kb)

References

  1. 1.
    Nalwa HS, Miyata S (1996) Nonlinear optics of organic molecules and polymers. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Li Z, Dong Y, Ha M et al (2006) Synthesis of, light emission from, and optical power limiting in soluble single-walled carbon nanotubes functionalized by disubstituted polyacetylenes. J Phys Chem B 110:2302–2309CrossRefPubMedGoogle Scholar
  3. 3.
    Fissi A, Pieroni O, Ruggeri G, Ciardelli F (1995) Photoresponsive polymers. Photomodulation of the macromolecular structure in poly(L-lysine) containing spiropyran units. Macromolecules 28:302–309. doi:10.1021/ma00105a042 CrossRefGoogle Scholar
  4. 4.
    Kawatsuki N, Matsushita H, Washio T et al (2014) Photoinduced orientation of photoresponsive polymers with N -benzylideneaniline derivative side groups. Macromolecules 47:324–332. doi:10.1021/ma4023247 CrossRefGoogle Scholar
  5. 5.
    Willner I (1997) Photoswitchable biomaterials: en route to optobioelectronic systems. Acc Chem Res 30:347–356. doi:10.1021/ar9700062 CrossRefGoogle Scholar
  6. 6.
    Ben LF,Wesley RB (2011) Photoswitchable modulation of biological activities, 2nd edn. Wiley, New YorkGoogle Scholar
  7. 7.
    Rao J, Dragulescu-Andrasi A, Yao H (2007) Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 18:17–25. doi:10.1016/j.copbio.2007.01.003 CrossRefPubMedGoogle Scholar
  8. 8.
    Bardhan R, Lal S, Joshi A, Halas NJ (2011) Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res 44:936–946. doi:10.1016/j.biotechadv.2011.08.021.Secreted CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bardhan R, Chen W, Bartels M et al (2010) Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo. Nano Lett 10:4920–4928. doi:10.1021/nl102889y CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Joo C, Balci H, Ishitsuka Y et al (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76. doi:10.1146/annurev.biochem.77.070606.101543 CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang J, Fu Y, Liang D et al (2008) Enhanced fluorescence images for labeled cells on silver island films enhanced fluorescence images for labeled cells on silver island films. Langmuir 24:12452–12457. doi:10.1021/la801749f CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhang J, Fu Y, Lakowicz JR (2007) Single cell fluorescence imaging using metal plasmon-coupled probe. Bioconjug Chem 18:800–805. doi:10.1021/bc0603384 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Waggoner A (2006) Fluorescent labels for proteomics and genomics. Curr Opin Chem Biol 10:62–66. doi:10.1016/j.cbpa.2006.01.005 CrossRefPubMedGoogle Scholar
  14. 14.
    Cram DJ, Karbach S, Kim HE et al (1988) Host-guest complexation. 46. Cavitands as open molecular vessels form solvates. J Am Chem Soc 110:2229–2237CrossRefGoogle Scholar
  15. 15.
    Cram DJ, Cram JM (1997) Container molecules and their guests. Royal Society of Chemistry, CambridgeGoogle Scholar
  16. 16.
    Dietrich B (1996) Comprehensive supramolecular chemistry. Elsevier, OxfordGoogle Scholar
  17. 17.
    Gutsche CD, Stoddart JF (1998) Calixarenes revisited. Royal Society of Chemistry, LondonGoogle Scholar
  18. 18.
    Timmerman P, Verboom W, Reinhoudt DN (1996) Resorcinarenes. Tetrahedron 52:2663–2704CrossRefGoogle Scholar
  19. 19.
    Bohmer V (1995) Calixarenes, macrocycles with (almost) unlimited possibilities. Angew Chem Int Ed 34:713–745CrossRefGoogle Scholar
  20. 20.
    Matouzenko GS, Borshch SA, Jeanneau E, Bushuev MB (2009) Spin crossover in a family of iron(II) complexes with hexadentate ligands: ligand strain as a factor determining the transition temperature. Chemistry 15:1252–60. doi:10.1002/chem.200801852 CrossRefPubMedGoogle Scholar
  21. 21.
    Schweinfurth D, Demeshko S, Hohloch S et al (2014) Spin crossover in Fe(II) and Co(II) complexes with the same click-derived tripodal ligand. Inorg Chem 53:8203–12. doi:10.1021/ic500264k CrossRefPubMedGoogle Scholar
  22. 22.
    Geraskina MR, Buck AT, Winter AH (2014) An organic spin crossover material in water from a covalently linked radical dyad. J Org Chem 79:7723–7727CrossRefPubMedGoogle Scholar
  23. 23.
    Gütlich P, Hauser A, Spiering H (1994) Thermal and optical switching of iron(II) complexes. Angew Chemie Int Ed Engl 33:2024–2054. doi:10.1002/anie.199420241 CrossRefGoogle Scholar
  24. 24.
    Moors SLC, Hellings M, De Maeyer M et al (2006) Tryptophan rotamers as evidenced by X-ray, fluorescence lifetimes, and molecular dynamics modeling. Biophys J 91:816–23. doi:10.1529/biophysj.106.085100 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Adams PD, Chen Y, Ma K et al (2002) Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides. J Am Chem Soc 124:9278–86CrossRefPubMedGoogle Scholar
  26. 26.
    Chambers RW, Kajiwara T, Kearns DR (1974) Effect of dimer formation on the electronic absorption and emission spectra of ionic dyes: Rhodamines and other common dyes. J Phys Chem 78:380–387. doi:10.1021/j100597a012 CrossRefGoogle Scholar
  27. 27.
    Han M, Hara M (2005) Intense fluorescence from light-driven self-assembled aggregates of non ionic azobenzene derivative. J Am Chem Soc 127:10951–10955. doi:10.1021/ja0509275 CrossRefPubMedGoogle Scholar
  28. 28.
    Zhao Y, Ci Y, Chang W (1997) Fluorescence enhancing by alkaline degradation of tetracycline antibiotics and its application. Sci China Ser B Chem 40:434–441. doi:10.1007/BF02877761 CrossRefGoogle Scholar
  29. 29.
    Csók Z, Takátsy A, Kollár L (2012) Highly selective palladium-catalyzed aminocarbonylation and cross-coupling reactions on a cavitand scaffold. Tetrahedron 68:2657–2661. doi:10.1016/j.tet.2012.01.065 CrossRefGoogle Scholar
  30. 30.
    Alper T (1946) Fluorescence fatigue. Nature 4013:451CrossRefGoogle Scholar
  31. 31.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer Science, BaltimoreCrossRefGoogle Scholar
  32. 32.
    Resch-Genger U, Rurack K (2013) Determination of the photoluminescence quantum yield of dilute dye solutions (IUPAC Technical Report). Pure Appl Chem 85:2005–2026. doi:10.1351/PAC-REP-12-03-03 CrossRefGoogle Scholar
  33. 33.
    Berryman OB, Sather AC, Rebek J (2011) A deep cavitand with a fluorescent wall functions as an ion sensor. Org Lett 13:5232–5235. doi:10.1021/ol2021127 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kubo Y, Tsuruzoe K, Okuyama S et al (2010) Resorcin[4]arene cavitand with 1,3,2-benzodiazaborolyl walls as a fluorescence receptor for ammonium cations. Chem Commun (Camb) 46:3604–3606. doi:10.1039/c0cc00259c CrossRefGoogle Scholar
  35. 35.
    Heller CA, Henry RA, McLaughlin BA, Bliss DE (1974) Fluorescence spectra and quantum yields. Quinine, uranine, 9,10-diphenylanthracene, and 9,10-bis(phenylethynyl)anthracenes. J Chem Eng Data 19:214–219. doi:10.1021/je60062a002 CrossRefGoogle Scholar
  36. 36.
    Montgomery DC, Peck EA, Vining GG (2012) Introduction to linear regression analysis. Wiley, HobokenGoogle Scholar
  37. 37.
    Satora A, Bentler PM (2001) A scaled difference Chi-square test statistic for moment structure analysis. Psychometrika 66:507–514CrossRefGoogle Scholar
  38. 38.
    Willis KJ, Szabo AG, Drew J (1990) Resolution of heterogeneous fluorescence into component decay-associated excitation spectra. Application to subtilisins. Biophys J 57:183–9. doi:10.1016/S0006-3495(90)82521-2 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Stern O, Volmer M (1919) Über die Abklingzeit der Fluoreszenz. Phys Zeitschr 20:183–188Google Scholar
  40. 40.
    Pochorovski I, Knehans T, Nettels D et al (2014) Experimental and computational study of BODIPY dye-labeled cavitand dynamics. J Am Chem Soc 136:2441–2449. doi:10.1021/ja4104292 CrossRefPubMedGoogle Scholar
  41. 41.
    Kunsági-Máté S, Iwata K (2009) Effect of cluster formation of solvent molecules on the preferential solvatation of anthracene in binary alcoholic solutions. Chem Phys Lett 473:284–287. doi:10.1016/j.cplett.2009.03.084 CrossRefGoogle Scholar
  42. 42.
    Csók Z, Kégl T, Li Y et al (2013) Synthesis of elongated cavitands via click reactions and their use as chemosensors. Tetrahedron 69:8186–8190. doi:10.1016/j.tet.2013.07.044 CrossRefGoogle Scholar
  43. 43.
    Csók Z, Kégl T, Párkányi L et al (2011) Facile, high-yielding synthesis of deepened cavitands: a synthetic and theoretical study. Supramol Chem 23:710–719. doi:10.1080/10610278.2011.593633 CrossRefGoogle Scholar
  44. 44.
    Stewart JJP (2013) Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model 19:1–32. doi:10.1007/s00894-012-1667-x CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–65. doi:10.1002/jcc.21759 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Tibor Zoltan Janosi
    • 1
    • 2
  • Geza Makkai
    • 1
    • 2
  • Timea Kegl
    • 3
    • 4
  • Peter Matyus
    • 5
  • Laszlo Kollar
    • 3
    • 4
  • Janos Erostyak
    • 1
    • 2
  1. 1.Institute of PhysicsUniversity of PecsPecsHungary
  2. 2.Szentagothai Research Centre, Spectroscopy Research GroupUniversity of PecsPecsHungary
  3. 3.Department of Inorganic ChemistryUniversity of PecsPecsHungary
  4. 4.MTA-PTE Research Group for Selective Chemical SynthesesPecsHungary
  5. 5.Department of Organic ChemistrySemmelweis UniversityBudapestHungary

Personalised recommendations