Skip to main content
Log in

A Fluorescent Switch Sensor for Glutathione Detection Based on Mn-doped CdTe Quantum Dots - Methyl Viologen Nanohybrids

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the work, a fluorescence switch sensor consists of Mn-doped CdTe quantum dots (QDs) - methyl viologen (MV2+) nanohybrid is fabricated. In the sensor, MV2+ plays a role in turning the QDs fluorescence to the “OFF” state due to the efficient electron transfer process while glutathione (GSH) could turn “ON” the native QDs fluorescence by effectively releasing QDs from the QDs-MV2+ nanohybrids. In addition, the recovery level of QDs fluorescence is closely related to the amount of GSH. Based on this phenomenon, a reliable and convenient GSH quantitative determination method is established, which not only has a wide determination range of 1.2–200 μM, a low detection limit of 0.06 μM and a short detection time but also can realize the selective detection of GSH upon other competitive biothiols (homocysteine and cysteine) that are coexistent in biological systems. The developed sensor will greatly benefit to the study of GSH amount, helping the understanding of its function in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1

Similar content being viewed by others

References

  1. Atli G, Canli M (2008) Responses of metallothionein and reduced glutathione in a freshwater fish Oreochromis niloticus following metal exposures. Environ Toxicol Pharmacol 25:33–38. doi:10.1016/j.etap.2007.08.007

    Article  CAS  PubMed  Google Scholar 

  2. Yin J, Kwon Y, Kim D, Lee D, Kim G, Hu Y, Ryu JH, Yoon J (2014) Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues. J Am Chem Soc 136:5351–5358. doi:10.1021/Ja412628z

    Article  CAS  PubMed  Google Scholar 

  3. Yuan Y, Zhang J, Wang MJ, Mei B, Guan YF, Liang GL (2013) Detection of glutathione in vitro and in cells by the controlled self-assembly of nanorings. Anal Chem 85:1280–1284. doi:10.1021/Ac303183v

    Article  CAS  PubMed  Google Scholar 

  4. Krauth-Siegel RL, Bauer H, Schirmer H (2005) Dithiol proteins as guardians of the intracellular redox milieu in parasites: old and new drug targets in trypanosomes and malaria-causing plasmodia. Angew Chem Int Ed 44:690–715. doi:10.1002/anie.200300639

    Article  CAS  Google Scholar 

  5. Lu SC (2009) Regulation of glutathione synthesis. Mol Aspects Med 30:42–59. doi:10.1016/j.mam.2008.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hodakova J, Preisler J, Foret F, Kuban P (2015) Sensitive determination of glutathione in biological samples by capillary electrophoresis with green (515 nm) laser-induced fluorescence detection. J Chromatogr A 1391:102–108. doi:10.1016/j.chroma.2015.02.062

    Article  CAS  PubMed  Google Scholar 

  7. Shen CC, Tseng WL, Hsieh MM (2012) Selective extraction of thiol-containing peptides in seawater using Tween 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence. J Chromatogr A 1220:162–168. doi:10.1016/j.chroma.2011.11.057

    Article  CAS  PubMed  Google Scholar 

  8. Kominkova M, Horky P, Cernei N, Tmejova K, Ruttkay-Nedecky B, Guran R, Pohanka M, Zitka O, Adam V, Kizek R (2015) Optimization of the glutathione detection by high performance liquid chromatography with electrochemical detection in the brain and liver of rats fed with taurine. Int J Electrochem Sci 10:1716–1727

    CAS  Google Scholar 

  9. Bayram B, Runbach G, Frank J, Esatbeyoglu T (2014) Rapid method for glutathione quantitation using high-performance liquid chromatography with coulometric electrochemical detection. J Agric Food Chem 62:402–408. doi:10.1021/Jf403857h

    Article  CAS  PubMed  Google Scholar 

  10. Rezaei B, Khosropour H, Ensafi AA, Hadadzadeh H, Farrokhpour H (2015) A differential pulse voltammetric sensor for determination of glutathione in real samples using a Trichloro(terpyridine) ruthenium (III)/Multiwall carbon nanotubes modified paste electrode. IEEE Sens J 15:483–490. doi:10.1109/Jsen.2014.2343152

    Article  CAS  Google Scholar 

  11. Yuan BQ, Zhang RC, Jiao XX, Li J, Shi HZ, Zhang DJ (2014) Amperometric determination of reduced glutathione with a new Co-based metal-organic coordination polymer modified electrode. Electrochem Commun 40:92–95. doi:10.1016/j.elecom.2014.01.006

    Article  CAS  Google Scholar 

  12. Ni PJ, Sun YJ, Dai HC, Hu JT, Jiang S, Wang YL, Li Z (2015) Highly sensitive and selective colorimetric detection of glutathione based on Ag [I] ion-3,3 ′,5,5 ′-tetramethylbenzidine (TMB). Biosens Bioelectron 63:47–52. doi:10.1016/j.bios.2014.07.021

    Article  CAS  PubMed  Google Scholar 

  13. Chen ZG, Wang Z, Chen JH, Wang SB, Huang XP (2012) Sensitive and selective detection of glutathione based on resonance light scattering using sensitive gold nanoparticles as colorimetric probes. Analyst 137:3132–3137. doi:10.1039/C2an35405e

    Article  CAS  PubMed  Google Scholar 

  14. Hu ZQ, Sun LL, Gu YY, Jiang Y (2015) A sensitive and selective fluorescent probe for detection of glutathione in the presence of Cu2+ and its application to biological imaging. Sensors Actuators B Chem 212:220–224. doi:10.1016/j.snb.2015.01.084

    Article  CAS  Google Scholar 

  15. Hou XF, Guo XL, Chen B, Liu CH, Gao F, Zhao J, Wang JH (2015) Rhodamine-based fluorescent probe for highly selective detection of glutathione over cysteine and homocysteine. Sensors Actuators B Chem 209:838–845. doi:10.1016/j.snb.2014.12.009

    Article  CAS  Google Scholar 

  16. Park KS, Kim MI, Woo MA, Park HG (2013) A label-free method for detecting biological thiols based on blocking of Hg2+−quenching of fluorescent gold nanoclusters. Biosens Bioelectron 45:65–69. doi:10.1016/j.bios.2013.01.047

    Article  PubMed  Google Scholar 

  17. Zhang N, Qu F, Luo HQ, Li NB (2013) Sensitive and selective detection of biothiols based on target-induced agglomeration of silver nanoclusters. Biosens Bioelectron 42:214–218. doi:10.1016/j.bios.2012.10.090

    Article  CAS  PubMed  Google Scholar 

  18. Guan ZP, Li S, Cheng PBS, Zhou N, Gao NY, Xu QH (2012) Band-selective coupling-induced enhancement of two-photon photoluminescence in gold nanocubes and its application as turn-on fluorescent probes for cysteine and glutathione. ACS Appl Mater Interfaces 4:5711–5716. doi:10.1021/Am301822v

    Article  CAS  PubMed  Google Scholar 

  19. Liu XD, Sun R, Ge JF, Xu YJ, Xu Y, Lu JM (2013) A squaraine-based red emission off-on chemosensor for biothiols and its application in living cells imaging. Org Biomol Chem 11:4258–4264. doi:10.1039/C3ob40502h

    Article  CAS  PubMed  Google Scholar 

  20. Guo YS, Wang H, Sun YS, Qu B (2012) A disulfide bound-molecular beacon as a fluorescent probe for the detection of reduced glutathione and its application in cells. Chem Commun 48:3221–3223. doi:10.1039/C2cc17552e

    Article  CAS  Google Scholar 

  21. Isik M, Ozdemir T, Turan IS, Kolemen S, Akkaya EU (2013) Chromogenic and fluorogenic sensing of biological thiols in aqueous solutions using BODIPY-based reagents. Org Lett 15:216–219. doi:10.1021/Ol303306s

    Article  CAS  PubMed  Google Scholar 

  22. Xu Q, Wei HP, Hu XY (2013) Glutathione detection based on ZnS quantum-dot-based OFF-ON fluorescent probe. Chin J Anal Chem 41:1102–1106. doi:10.3724/Sp.J.1096.2013.21154

    Google Scholar 

  23. Liu JF, Bao CY, Zhong XH, Zhao CC, Zhu LY (2010) Highly selective detection of glutathione using a quantum-dot-based OFF-ON fluorescent probe. Chem Commun 46:2971–2973. doi:10.1039/B924299f

    Article  CAS  Google Scholar 

  24. Deng RR, Xie XJ, Vendrell M, Chang YT, Liu XG (2011) Intracellular glutathione detection using MnO2-Nanosheet-Modified upconversion nanoparticles. J Am Chem Soc 133:20168–20171. doi:10.1021/Ja2100774

    Article  CAS  PubMed  Google Scholar 

  25. Zhou L, Lin YH, Huang ZZ, Ren JS, Qu XG (2012) Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem Commun 48:1147–1149. doi:10.1039/C2cc16791c

    Article  CAS  Google Scholar 

  26. Ran X, Sun HJ, Pu F, Ren JS, Qu XG (2013) Ag Nanoparticle-decorated graphene quantum dots for label-free, rapid and sensitive detection of Ag+ and biothiols. Chem Commun 49:1079–1081. doi:10.1039/C2cc38403e

    Article  CAS  Google Scholar 

  27. Huang H, Shi FP, Li YA, Niu L, Gao Y, Shah SM, Su XG (2013) Water-soluble conjugated polymer-Cu(II) system as a turn-on fluorescence probe for label-free detection of glutathione and cysteine in biological fluids. Sensors Actuators B Chem 178:532–540. doi:10.1016/j.snb.2013.01.003

    Article  CAS  Google Scholar 

  28. Pradhan N, Peng XG (2007) Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry. J Am Chem Soc 129:3339–3347. doi:10.1021/Ja068360v

    Article  CAS  PubMed  Google Scholar 

  29. Sharma M, Jain T, Singh S, Pandey OP (2012) Tunable emission in surface passivated Mn-ZnS nanophosphors and its application for Glucose sensing. Aip Adv 2. doi: 10.1063/1.3698310

  30. Bian W, Ma J, Liu QL, Wei YL, Li YF, Dong C, Shuang SM (2014) A novel phosphorescence sensor for Co2+ ion based on Mn-doped ZnS quantum dots. Luminescence 29:151–157. doi:10.1002/Bio.2520

    Article  CAS  PubMed  Google Scholar 

  31. Zhou M, Chen XF, Xu YY, Qu JC, Jiao LX, Zhang HG, Chen HL, Chen XG (2013) Sensitive determination of Sudan dyes in foodstuffs by Mn-ZnS quantum dots. Dyes Pigments 99:120–126. doi:10.1016/j.dyepig.2013.04.027

    Article  CAS  Google Scholar 

  32. Liang GX, Pan HC, Li Y, Jiang LP, Zhang JR, Zhu JJ (2009) Near infrared sensing based on fluorescence resonance energy transfer between Mn:CdTe quantum dots and Au nanorods. Biosens Bioelectron 24:3693–3697. doi:10.1016/j.bios.2009.05.008

    Article  CAS  PubMed  Google Scholar 

  33. Li L, Cai XY, Ding YP, Gu SQ, Zhang QL (2013) Synthesis of Mn-doped CdTe quantum dots and their application as a fluorescence probe for ascorbic acid determination. Anal Methods 5:6748–6754. doi:10.1039/C3ay41257a

  34. DiazCruz MS, Mendieta J, Tauler R, Esteban M (1997) Cadmium-binding properties of glutathione: a chemometrical analysis of voltammetric data. J Inorg Biochem 66:29–36. doi:10.1016/S0162-0134(96)00156-0

    Article  CAS  Google Scholar 

  35. Zhang YH, Zhang HS, Ma M, Guo XF, Wang H (2009) The influence of ligands on the preparation and optical properties of water-soluble CdTe quantum dots. Appl Surf Sci 255:4747–4753. doi:10.1016/j.apsusc.2008.09.009

    Article  CAS  Google Scholar 

  36. Zhang LJ, Xu CL, Li BX (2009) Simple and sensitive detection method for chromium(VI) in water using glutathione-capped CdTe quantum dots as fluorescent probes. Microchim Acta 166:61–68. doi:10.1007/s00604-009-0164-0

    Article  CAS  Google Scholar 

  37. Han BY, Yuan JP, Wang EK (2009) Sensitive and selective sensor for biothiols in the cell based on the recovered fluorescence of the CdTe quantum dots-Hg(II) system. Anal Chem 81:5569–5573. doi:10.1021/Ac900769h

    Article  CAS  PubMed  Google Scholar 

  38. Xu H, Wang YW, Huang XM, Li Y, Zhang H, Zhong XH (2012) Hg2+−mediated aggregation of gold nanoparticles for colorimetric screening of biothiols. Analyst 137:924–931. doi:10.1039/C2an15926k

    Article  CAS  PubMed  Google Scholar 

  39. Li Y, Wu P, Xu H, Zhang H, Zhong XH (2011) Anti-aggregation of gold nanoparticle-based colorimetric sensor for glutathione with excellent selectivity and sensitivity. Analyst 136:196–200. doi:10.1039/C0an00452a

    Article  CAS  PubMed  Google Scholar 

  40. Liu X, Wang Q, Zhang Y, Zhang LC, Su YY, Lv Y (2013) Colorimetric detection of glutathione in human blood serum based on the reduction of oxidized TMB. New J Chem 37:2174–2178. doi:10.1039/C3nj40897c

    Article  CAS  Google Scholar 

  41. Ma YH, Zhang ZY, Ren CL, Liu GY, Chen XG (2012) A novel colorimetric determination of reduced glutathione in A549 cells based on Fe3O4 magnetic nanoparticles as peroxidase mimetics. Analyst 137:485–489. doi:10.1039/C1an15718c

    Article  CAS  PubMed  Google Scholar 

  42. Shi YP, Pan Y, Zhang H, Zhang ZM, Li MJ, Yi CQ, Yang MS (2014) A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma. Biosens Bioelectron 56:39–45. doi:10.1016/j.bios.2013.12.038

    Article  CAS  PubMed  Google Scholar 

  43. Banerjee S, Kar S, Perez JM, Santra S (2009) Quantum dot-based OFF/ON probe for detection of glutathione. J Phys Chem C 113:9659–9663. doi:10.1021/Jp9019574

    Article  CAS  Google Scholar 

  44. Tang YR, Song HJ, Su YY, Lv Y (2013) Turn-on persistent luminescence probe based on graphitic carbon nitride for imaging detection of biothiols in biological fluids. Anal Chem 85:11876–11884. doi:10.1021/Ac403517u

    Article  CAS  PubMed  Google Scholar 

  45. Matylitsky VV, Dworak L, Breus VV, Basche T, Wachtveitl J (2009) Ultrafast charge separation in multiexcited CdSe quantum dots mediated by adsorbed electron acceptors. J Am Chem Soc 131:2424. doi:10.1021/Ja808084y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (NSFC) (No. 21271127, 61171033), the Nano-Foundation of Science and Techniques Commission of Shanghai Municipality (No. 12nm0504200) and the Natural Science Foundation of Shanghai Municipality (No. 13ZR1415600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Li, L., Ding, Y. et al. A Fluorescent Switch Sensor for Glutathione Detection Based on Mn-doped CdTe Quantum Dots - Methyl Viologen Nanohybrids. J Fluoresc 26, 651–660 (2016). https://doi.org/10.1007/s10895-015-1751-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1751-6

Keywords

Navigation