Skip to main content
Log in

Fluorescence-Enhanced Sensing of Hypochlorous Acid Based on 2-Pyridylthiazole Unit

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Hypochlorous acid, being one of reactive oxygen species (ROS), is essential to protect the body against invasion of pathogens. Excess of hypochlorous acid (HOCl) is believed to be in tight connection with various inflammation-related diseases. It remains a challenge to detect the ROS in physiological conditions (aqueous buffer and neutral pH) with selectivity. In the presented paper, we have synthesized a ferrocence-modified pyridylthiazole derivatives, 1,4-di{5-[(4’-ferrocenyl-2’-(4”-pyridyl)]thiazinyl}benzene (DFPT). Only HOCl could turn-on the fluorescence of DFPT with enhanced emission at 465 nm. Compared to the other reported HOCl sensors, DFPT could selectively detect HOCl with rapid response (< 60 s) in the aqueous buffer (pH = 7.0). The detection limit at pH = 7.0 was 0.7 μM according to the titration experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  2. Smith LL (2004) Oxygen, oxysterols, ouabain, and ozone: a cautionary tale. Free Radic Biol Med 37:318–324

    Article  CAS  PubMed  Google Scholar 

  3. Lambeth JD (2007) Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med 43:332–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Winterbourn CC, Hampton MB, Livesey JH, Kettle AJ (2006) Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome. J Biol Chem 281:39860–39869

    Article  CAS  PubMed  Google Scholar 

  5. Lapenna D, Cuccurullo F (1996) Hypochlorous acid and its pharmacological antagonism: an update picture. Gen Pharmacol 27:1145–1147

    Article  CAS  PubMed  Google Scholar 

  6. Winterbourn CC, Kettle AJ (2000) Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radic Biol Med 39:403–409

    Article  Google Scholar 

  7. Wu SM, Pizzo SV (2001) α2-mcroglobulin from rheumatoid arthritis synovial fluid: functional analysis defines a role for oxidation in inflammation. Arch Biochem Biophys 391:119–126

    Article  CAS  PubMed  Google Scholar 

  8. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625

    Article  CAS  PubMed  Google Scholar 

  9. Aoki T, Munemori M (1983) Continuous flow determination of free chlorine in water. Anal Chem 55:209–212

    Article  CAS  Google Scholar 

  10. Lin W, Long L, Chen B, Tan W (2009) A ratiometric fluorescent probe for hypochlorite based on a deoximation reaction. Chem Eur J 15:2305–2309

    Article  CAS  PubMed  Google Scholar 

  11. Chen X, Tian X, Shin I, Yoon J (2011) Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 40:4783–4804

    Article  CAS  PubMed  Google Scholar 

  12. Xu Q, Lee K-A, Lee S, Lee KM, Lee W-J (2013) A highly specific fluorescent probe for hypochlorous acid and its application in imaging microbe-induced HOCl production. J Am Chem Soc 135:9944–9949

    Article  CAS  PubMed  Google Scholar 

  13. Yuan L, Lin W, Xie Y, Chen B, Song J (2012) Fluorescent detection of hypochlorous acid from turn-on to FRET-based ratiometry by a HOCl-mediated cyclization reaction. Chem Eur J 18:2700–2706

    Article  CAS  PubMed  Google Scholar 

  14. Koide Y, Urano Y, Hanaoka K, Terai T, Nagano T (2011) Development of an Si-rhodamine-based far-red to near-infrared fluorescence probe selective for hypochlorous acid and its applications for biological imaging. J Am Chem Soc 133:5680–5682

    Article  CAS  PubMed  Google Scholar 

  15. Chen X, Lee K-A, Ha E-M, Lee KM, Seo YY, Choi HK, Kim HN, Kim MJ, Cho C-S, Lee SY, Lee W-J, Yoon J (2011) A specific and sensitive method for detection of hypochlorous acid for the imaging of microbe-induced HOCl production. Chem Commun 47:4373–4375

    Article  CAS  Google Scholar 

  16. Lou X, Zhang Y, Li Q, Qin J, Li Z (2011) A highly specific rhodamine-based colorimetric probe for hypochlorites: a new sensing strategy and real application in trap water. Chem Commun 47:3189–3191

    Article  CAS  Google Scholar 

  17. Kenmoku S, Urano Y, Kojima H, Nagano T (2007) Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis. J Am Chem Soc 129:7313–7318

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y-R, Chen X-P, Shao J, Zhang J-Y, Yuan Q, Miao J-Y, Zhao B-X (2014) A ratiometric fluorescent probe for sensing HOCl based on a coumarin-rhodamine dyad. Chem Commun 50:14241–14244

    CAS  Google Scholar 

  19. Li G, Zhu D, Liu Q, Xue L, Jiang H (2013) A strategy for highly selective detection and imaging of hypochlorite using selenoxide elimination. Org Lett 15:2002–2005

    Article  CAS  PubMed  Google Scholar 

  20. Emrullahoğlu M, Üçüncü M, Karakuş E (2013) A BODIPY aldoxime-based chemodosimeter for highly selective and rapid detection of hypochlorous acid. Chem Commun 49:7836–7838

    Article  Google Scholar 

  21. Park J, Kim H, Choi Y, Kim Y (2013) A ratiometric fluorescent probe based on a BODIPY-DCDHF conjugate for the detection of hypochlorous acid in living cells. Analyst 138:3368–3371

    Article  CAS  PubMed  Google Scholar 

  22. Wang B, Li P, Yu F, Chen J, Qu Z, Han K (2013) A near-infrared reversible and ratiometric fluorescent probe based on Se-BODIPY for the redox cycle mediated by hypobromous acid and hydrogen sulfide in living cells. Chem Commun 49:5790–5792

    Article  CAS  Google Scholar 

  23. Kim T-I, Park S, Choi Y, Kim Y (2011) A BODIPY-based probe for the selective detection of hypochlorous acid in living cells. Chem Asian J 6:1358–1361

    Article  CAS  PubMed  Google Scholar 

  24. Ma F, Sun M, Zhang K, Zhang Y, Zhu H, Wu L, Huang D, Wang S (2014) An oxidative cleavage-based ratiometric fluorescent probe for hypochlorous acid detection and imaging. RSC Advances 4:59961–59964

    Article  CAS  Google Scholar 

  25. Lou Z, Li P, Song P, Han K (2013) Ratiometric fluorescence imaging of cellular hypochlorous acid based on heptamethine cyanine dyes. Analyst 138:6291–6295

    Article  CAS  PubMed  Google Scholar 

  26. Yu F, Li P, Wang B, Han K (2013) Reversible near-infrared fluorescent probe introducing tellurium to mimetic glutathione peroxidase for monitoring the redox cycles between peroxynitrite and glutathione in vivo. J Am Chem Soc 135:7674–7680

    Article  CAS  PubMed  Google Scholar 

  27. Chen X, Jia H, Long T, Feng J, Qin J, Li Z (2011) A “turn-on” fluorescent probe for hypochlorous acid: convenient synthesis, good sensing performance, and a new design strategy by the removal of C = N isomerization. Chem Commun 47:11978–11980

    Article  Google Scholar 

  28. Chen S, Lu J, Sun C, Ma H (2010) A highly specific ferrocene-based fluorescent probe for hypochlorous acid and its application to cell imaging. Analyst 135:577–582

    Article  CAS  PubMed  Google Scholar 

  29. Lin W, Long L, Chen B, Tan W (2009) A ratiometric fluorescent probe for hypochlorite based on deoximation reaction. Chem Eur J 15:2305–2309

    Article  CAS  PubMed  Google Scholar 

  30. Zheng M-H, Jin J-Y, Sun W, Yan C-H (2006) A new series of fluorescent 5-methoxy-2-pyridylthiazoles with a pH-sensitive dual-emission. New J Chem 30:1196–1196

    Google Scholar 

  31. Li L-L, Sun H, Fang C-J, Xu J, Jin J-Y, Yan C-H (2007) Optical sensors based on functionalized mesoporous silica SBA-15 for the detection of multianalytes (H+ and Cu2+) in water. J Mater Chem 17:4492–4498

    Article  CAS  Google Scholar 

  32. Zheng M-H, Zhang M-M, Li H-H, Jin J-Y (2012) Digital pH fluorescent sensing shown by small organic molecules. J Fluoresc 22:1421–1424

    Article  CAS  PubMed  Google Scholar 

  33. Zheng M-H, Sun W, Jin J-Y, Yan C-H (2014) Molecular keypad locks based on gated photochromism and enhanced fluorescence by protonation effects. J Fluoresc 14:1169–1176

    Article  CAS  Google Scholar 

  34. Zheng M-H, Liu X-L, Jin J-Y (2014) Synthesis of 2,4-di((5-methoxy-2-thiazoyl) pyridine and its fluorescent responses to Ag+ and pH. J Yanbian Univ (Nat Sci) 40:38–41

    Google Scholar 

  35. Zheng M-H, Hu X, Yang M-Y, Jin J-Y (2015) Ratiometrically fluorescent sensing of Zn(II) based on dual-emission of 2-pyridylthiazole derivatives. J Fluoresc. doi:10.1007/s10895-015-1675-1

    Google Scholar 

  36. Rutenberg MW, Horning EC (1950) 1-methyl-3-ethyloxindole. Org Synth 30:62–63

    Article  CAS  Google Scholar 

  37. Zhao H, Kalivendi S, Zhang H, Joseph J, Nithipatikom K, Vásquez-Vivar J, Kalyanaraman B (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med 34:1359–1368

    Article  CAS  PubMed  Google Scholar 

  38. Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T (2003) Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem 278:3170–3175

    Article  CAS  PubMed  Google Scholar 

  39. Aubry JM (1989) Chemical sources of singlet oxygen. 3. Peroxidation of Water-soluble Singlet Oxygen Carriers with the Hydrogen Peroxide-Molybdate System 54:726–728

    CAS  Google Scholar 

  40. Lide DR (2005) CRC handbook of chemistry and physics (85 Ed.), 85th edn. CRC Press, Boca Raton

    Google Scholar 

  41. Fery-Forgues S, Delavaux-Nicot B (2000) Ferrocene and ferrocenyl derivatives in luminescent systems. J Photochem Photobiol A 132:137–159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thanks the financial supports from the National Natural Science Foundation of China (NSFC 21062023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Yi Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, MH., Hu, X., Wang, XW. et al. Fluorescence-Enhanced Sensing of Hypochlorous Acid Based on 2-Pyridylthiazole Unit. J Fluoresc 26, 593–598 (2016). https://doi.org/10.1007/s10895-015-1745-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1745-4

Keywords

Navigation