Skip to main content
Log in

Studies of Luminescence Performance on Carbazole Donor and Quinoline Acceptor Based Conjugated Polymer

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We report on the synthesis of conjugated polymer (CV-QP) containing carbazole (donor) and quinoline (acceptor) using Wittig methodology. The structural, optical and thermal properties of the polymer were investigated by FT-IR, NMR, GPC, UV, PL, cyclic voltammetry, atomic force microscopy (AFM) and thermogravimetric analysis (TGA). The polymer exhibits thermal stability upto 200 °C and shows good solubility in common organic solvents. The polymer has optical absorption band in a thin film at 360 nm and emission band formed at 473 nm. The optical energy band gap was found to be 2.69 eV as calculated from the onset absorption edge. Fluorescence quenching of the polymer CV-QP was found by using DMA (electron donor) and DMTP (electron acceptor). AFM image indicated that triangular shaped particles were observed and the particle size was found as 1.1 μm. The electrochemical studies of CV-QP reveal that, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the CV-QP are 6.35 and 3.70 eV, which indicated that the polymers are expected to provide charge transporting properties for the development of polymer light-emitting diodes (PLEDs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grazulevicius JV, Strohriegl P, Pielichowski J, Pielichowski K (2003) Prog Polym Sci 28:1297

    Article  CAS  Google Scholar 

  2. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) J Chem Soc Chem Commun:578

  3. Morin JF, Leclerc M, Ades D, Siove A (2005) Macromol Rapid Commun 26:761

    Article  Google Scholar 

  4. Ishida T, Tsunoda R, Zhang Z, Hamasaki A, Honma T, Ohash H, Yokoyama T, Tokunaga M (2014) Appl Catal B Env 150:523

    Article  Google Scholar 

  5. Kotchapradist P, Prachumrak N, Tarsang R, Jungsuttiwong S, Keawin T, Sudyoadsuk T, Promarak V (2013) J Mater Chem 1:4916

    Article  CAS  Google Scholar 

  6. Ooyama Y, Inoue S, Nagano T, Kushimoto K, Ohshita J, Imae I, Komaguchi K, Harima Y (2011) Chem Int Ed 50:7429

    Article  CAS  Google Scholar 

  7. Wang HY, Liu F, Xie LH, Tang C, Peng B, Huang W, Wei W (2011) J Phys Chem C 115:6961

    Article  CAS  Google Scholar 

  8. Tunney SE, Suenaga J, Stille JK (1987) Macromolecules 20:258–264

    Article  CAS  Google Scholar 

  9. Gondek E, Danel A, Nizio J, Armatys PIVK, Szlachcic P, Karelus M, Uchacz T, Chwast J, Lakshminarayana G (2010) J Lumin 130:2093

    Article  CAS  Google Scholar 

  10. Funaki T, Komatsuzaki NO, Kasuga K, Sayama KHS (2013) Inorg Chem Commun 35:281

    Article  CAS  Google Scholar 

  11. Tong H, Wang L, Jing X, Wang F (2002) Macromolecules 35:7169

    Article  CAS  Google Scholar 

  12. Solon PE, Christos LC, Vasilis GG, Joannis KK, Sophie B, Georges H (2007) Macromolecules 40:921

    Article  Google Scholar 

  13. Agrawal AK, Jenekhe SA (1991) Macromolecules 24:6806

    Article  CAS  Google Scholar 

  14. Agrawal AK, Jenekhe SA (1996) Chem Mater 8:579–589

    Article  CAS  Google Scholar 

  15. Agrawal AK, Jenekhe SA, Vanherzeele HV, Meth JS (1992) J Phys Chem 96:2837

    Article  CAS  Google Scholar 

  16. Iranfar H, Rajabi O, Salari R, Chamani J (2012) J Phys Chem B 116:1951

    Article  CAS  PubMed  Google Scholar 

  17. Sattar Z, Saberi MR, Chamani J (2004) PLoS One 9:84045

    Article  Google Scholar 

  18. Sattar Z, Iranfar H, Asoodeh A, Saberi MR, Mazhari M, Chamani J (2012) Spectrochim Acta A 97:1089

    Article  CAS  Google Scholar 

  19. Sarzehi S, Chamani J (2010) Int J Biol Macromolec 47:558

    Article  CAS  Google Scholar 

  20. Aleman EA, Silva CD, Patrick EM, Forsyth KM, Rueda D (2014) J Phys Chem Lett 5:777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bredas JL (1990) Chance RR Eds. Kluwer Academic Publishers, Dordrecht, Holland

    Google Scholar 

  22. Havinga EE, Hoeve W, Wynberg H (1993) Synth Met 55:299

    Article  CAS  Google Scholar 

  23. Leclerea P, Hennebicqa E, Calderonea A, Brocorensa P, Grimsdaleb AC, Mullenb K, Bredasa JLC, Lazzaronia RC (2003) Prog Polym Sci 28:55

    Article  Google Scholar 

  24. Hu BB, Zeng XC, Bian LRH (2012) Acta Cryst 68:2517

    Article  Google Scholar 

  25. Wang S, Hua W, Zhang F, Wang Y (1999) Synth Met 99:249

    Article  CAS  Google Scholar 

  26. Karpagam S, Guhanathan S (2014) J Lumin 45:752

    Article  Google Scholar 

  27. Homocianu M, Airinei A, Dorohoi DO (2011) J Appl Phys 1:11105

    Google Scholar 

  28. Reichardt C (1994) Chem Rev 94:2319

    Article  CAS  Google Scholar 

  29. Hwang SW, Chen Y (2001) Macromolecules 34:2981

    Article  CAS  Google Scholar 

  30. Jerca VV, Nicolescu FA, Baran A, Anghel DF, Vasilescu DS, Vuluga DM (2010) React Funct Polym 70:828

    Article  Google Scholar 

  31. Mori T, Kijima M (2009) Eur Polym J 45:1149–1157

    Article  CAS  Google Scholar 

  32. Concilio S, Bugatti V, Iannelli P, Piotto S (2010) Int J Polym Sci:1

  33. Luo J, Yang C, Zheng J, Ma J, Liang L, Lu M (2011) Eur Polym J 47:385

    Article  CAS  Google Scholar 

  34. Murali MG, Naveen P, Udaykumar D, Yadav V, Srivastava R (2012) Tetrahedron Lett 53:157

    Article  CAS  Google Scholar 

  35. Shi W, Wang L, Zhen H, Zhu D, Awut T, Mi H, Nurulla I (2009) Dyes Pig 83:102

    Article  CAS  Google Scholar 

  36. Deng JLG, Xiu Q, Zhang L, Wen G, Zhong C (2012) Mater Chem Phys 133:452

    Article  CAS  Google Scholar 

  37. Keerthi A, Sriramulu D, Liu Y, Timothy CTY, Wang Q, Valiyaveettil S (2013) Dyes Pig 99:787

    Article  CAS  Google Scholar 

  38. Baran D, Balan A, Celebi S, Esteban BM, Neugebauer H, Sariciftci NS, Toppare L (2010) Chem Mater 22:2978

    Article  CAS  Google Scholar 

  39. Koyuncu S, Zafer C, Koyuncu FB, Aydin B, Can M, Sefer E, Ozdemir E, Icli S (2009) J Polym Sci 47:6280

    Article  CAS  Google Scholar 

  40. Oo TZ, Mathews N, Tam TL, Xing GC, Sum TC, Sellinger A, Wong LH, Mhaisalkar SG (2010) Thin Solid Films 518:5292

    Article  CAS  Google Scholar 

  41. Nagarajan N, Velmurugan G, Prabhu G, Venuvanalingam P, Renganathan R (2014) J Lumin 147:111

    Article  CAS  Google Scholar 

  42. Melavankia RM, Kusanurb RA, Kulakarnib MV, Kadadevarmatha JS (2008) J Lumin 128:573

    Article  Google Scholar 

  43. Zhao D, Swager TM (2005) Macromolecules 38:9377

    Article  CAS  Google Scholar 

  44. Song WQ, Cui YZ, Tao FR, Xu JK, Li TD, Wang AQ (2015) Opt Mater 42:225

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the VIT University for providing the necessary facilities and DST/VIT-SIF for recording spectral data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karpagam S.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, A., S, K. Studies of Luminescence Performance on Carbazole Donor and Quinoline Acceptor Based Conjugated Polymer. J Fluoresc 26, 439–449 (2016). https://doi.org/10.1007/s10895-015-1730-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1730-y

Keywords

Navigation