Skip to main content
Log in

A Chromone-Derived Schiff-Base Ligand as Al3+ “Turn on” Fluorescent Sensor: Synthesis and Spectroscopic Properties

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this study, a novel chromone-derived Schiff-base ligand called 6-Hydroxy-3-formylchromone (2′-furan formyl) hydrazone (HCFH) has been designed and synthesized as a “turn on” fluorescent sensor for Al3+. This sensor HCFH showed high selectivity and sensitivity towards Al3+ over other metal ions investigated, and most metal ions had nearly no influences on the fluorescence response of HCFH to Al3+. Additionally, the significant enhancement by about 171-fold in fluorescence emission intensity at 502 nm was observed in the presence of Al3+ in ethanol, and it was due to the chelation-enhanced fluorescence (CHEF) effect upon complexation of HCFH with Al3+ which inhibited the photoinduced electron transfer (PET) phenomenon from the Schiff-base nitrogen atom to chromone group. Moreover, this sensor formed a 1 : 1 complex with Al3+ and the fluorescence response of HCFH to Al3+ was nearly completed within 1 min. Thus, this sensor HCFH could be used to detect and recognize Al3+ for real-time detection.

Chromone derivate HCFH for selective detection of Al3+ with fluorescence enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bordini J, Calandreli I, Silva GO, Ferreira KQ, Leitao-Mazzi DPS, Espreafico EM, Tfouni E (2013) A rhodamine-B-based turn-on fluorescent sensor for biological Iron(III). Inorg Chem Commun 35:255–259

    Article  CAS  Google Scholar 

  2. Faiz-Ur-Rahman X, Ali A, Guo R, Tian J, Wang H, Li Z-T, Zhang D-W (2015) Methionine-derived Schiff base as selective fluorescent “turn-on” chemosensor for Zn2+ in aqueous medium and its application in livingcells imaging. Sensor Actuat B-Chem 211:544–550

    Article  Google Scholar 

  3. Zhang J, Zhao B-J, Li C, Zhu X-F, Qiao R-Z (2014) A BODIPY-based “turn-on” fluorescent and colorimetric sensor for selective detection of Cu2+ in aqueous media and its application in cell imaging. Sensor Actuat B-Chem 196:117–122

    Article  CAS  Google Scholar 

  4. Li Y, Li L-Z, Pu X-W, Ma G-L, Wang E-Q, Kong J-M, Liu Z-P, Liu Y-Z (2012) Synthesis of a ratiometric fluorescent peptide sensor for the highly selective detection of Cd2+. Bioorg Med Chem Lett 22:4014–4017

    Article  PubMed  CAS  Google Scholar 

  5. Hsieh YC, Chir JL, Yang S-T, Chen S-J, Hu C-H, Wu A-T (2011) A sugar-aza-crown ether-based fluorescent sensor for Cu2+ and Hg2+ ions. Carbohyd Res 346:978–981

    Article  CAS  Google Scholar 

  6. Asimov I (1954) The elementary composition of the earth’s crust. J Chem Educ 31:70–72

    Article  CAS  Google Scholar 

  7. Fleischer M (1954) The abundance and distribution of the chemical elements in the earth’s crust. J Chem Educ 31:446–455

    Article  CAS  Google Scholar 

  8. Wang W-D, Li H, Ding Z-Z, Wang X-C (2011) Effects of advanced oxidation pretreatment on residual aluminum control in high humic acid water purification. J Environ Sci (China) 23:1079–1085

    Article  CAS  Google Scholar 

  9. Yokel RA, Hicks CL, Florence RL (2008) Aluminum bioavailability from basic sodium aluminum phosphate, an approved food additive emulsifying agent, incorporated in cheese. Food Chem Toxicol 46:2261–2266

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Kontoghiorghes GJ (1995) Comparative efficacy and toxicity of desferrioxamine, deferiprone and other iron and aluminium chelating drugs. Toxicol Lett 80:1–18

    Article  PubMed  CAS  Google Scholar 

  11. Slamova M, Ocenasek V, Voort GV (2004) Polarized light microscopy: utilization in the investigation of the recrystallization of aluminum alloys. Mater Charact 52:165–177

    Article  CAS  Google Scholar 

  12. Cavanaugh MK, Birbilis N, Buchheit RG (2012) Modeling pit initiation rate as a function of environment for aluminum alloy 7075-T651. Electrochim Acta 59:336–345

    Article  CAS  Google Scholar 

  13. Oberholster PJ, Myburgh JG, Ashton PJ, Coetzee JJ, Botha AM (2012) Bioaccumulation of aluminium and iron in the food chain of lake Loskop, South Africa. Ecotox Environ Safe 75:134–141

    Article  CAS  Google Scholar 

  14. Loizzo A, Caroli S, Ortolani E (1983) A pharmacological analysis of aluminum effects on the central nervous system. Inorg Chim Acta 79:308–309

    Article  Google Scholar 

  15. Braydich-Stolle LK, Speshock JL, Castle A, Smith M, Murdock RC, Hussain SM (2010) Nanosized aluminum altered immune function. ACS Nano 4:3661–3670

    Article  PubMed  CAS  Google Scholar 

  16. Polizzi S, Pira E, Ferrara M, Bugiani M, Papaleo A, Albera R, Palmi S (2002) Neurotoxic effects of aluminium among foundry workers and Alzheimer’s disease. Neurotoxicol 23:761–774

    Article  CAS  Google Scholar 

  17. Mendez-Alvarez E, Soto-Otero R, Hermida-Ameijeiras A, Lopez-Real AM, Labandeira-Garcia JL (2002) Effects of aluminum and zinc on the oxidative stress caused by 6-hydroxydopamine autoxidation: relevance for the pathogenesis of Parkinson’s disease. Biochim Biophys Acta 1586:155–168

    Article  PubMed  CAS  Google Scholar 

  18. Schreeder MT, Favero MS, Hughes JR, Petersen NJ, Bennett PH, Maynard JE (1983) Dialysis encephalopathy and aluminum exposure: an epidemiologic analysis. J Chro Dis 36:581–593

    Article  CAS  Google Scholar 

  19. Rouphael Y, Cardarelli M, Colla G (2015) Role of arbuscular mycorrhizal fungi in alleviating the adverse effects of acidity and aluminium toxicity in zucchini squash. Sci Hortic-Amsterdam 188:97–105

    Article  CAS  Google Scholar 

  20. Poleo ABS, Ostbye K, Oxnevad SA, Andersen RA, Heibo E, Vollestad LA (1997) Toxicity of acid aluminum-rich water to seven freshwater fish species: a comparative laboratory study. Environ Pollut 96:129–139

    Article  PubMed  CAS  Google Scholar 

  21. Eleckova L, Alexovic M, Kuchar J, Balogh IS, Andruch V (2015) Visual detection and sequential injection determination of aluminium using a cinnamoyl derivative. Talanta 133:27–33

    Article  PubMed  CAS  Google Scholar 

  22. Erdemir S, Kocyigit O, Malkondu S (2015) Detection of Hg2+ ion in aqueous media by new fluorometric and colorimetric sensor based on triazole–rhodamine. J Photoch Photobio A-Chem 309:15–21

    Article  CAS  Google Scholar 

  23. Zhou Y, Chu K-H, Zhen H-F, Fang Y, Yao C (2013) Visualizing Hg2+ ions in living cells using a FRET-based fluorescent sensor. Spectrochim Acta Part A Mol Biomol Spectrosc 106:197–202

    Article  CAS  Google Scholar 

  24. Hagimori M, Temma T, Mizuyama N, Uto T, Yamaguchi Y, Tominaga Y, Mukai T, Saji H (2015) A high-affinity fluorescent Zn2+ sensor improved by the suppression of pyridine-pyridone tautomerism and its application in living cells. Sensor Actuat B-Chem 213:45–52

    Article  CAS  Google Scholar 

  25. Gupta VK, Singh AK, Mergu N (2014) Antipyrine based Schiff bases as turn-on fluorescent sensors for Al(III) ion. Electrochim Acta 117:405–412

    Article  CAS  Google Scholar 

  26. Qin J-C, Li T-R, Wang B-D, Yang Z-Y, Fan L (2014) Fluorescent sensor for selective detection of Al3+ based on quinoline–coumarin conjugate. Spectrochim Acta Part A Mol Biomol Spectrosc 133:38–43

    Article  CAS  Google Scholar 

  27. Lee J, Kim H, Kim S, Noh JY, Song EJ, Kim C, Kim J (2013) Fluorescent dye containing phenol-pyridyl for selective detection of aluminum ions. Dyes Pigments 96:590–594

    Article  CAS  Google Scholar 

  28. Soroka K, Vithanage RS, Phillips DA, Walker B, Dasgupta PK (1987) Fluorescence properties of metal complexes of 8-hydroxyquinoline-5-sulfonic acid and chromatographic applications. Anal Chem 59:629–636

    Article  CAS  Google Scholar 

  29. Manjunath R, Hrishikesan E, Kannan P (2015) A selective colorimetric and fluorescent sensor for Al3+ ion and its application to cellular imaging. Spectrochim Acta Part A Mol Biomol Spectrosc 140:509–515

    Article  CAS  Google Scholar 

  30. Malkondu S (2014) A highly selective and sensitive perylenebisimide-based fluorescent PET sensor for Al3+ determination in MeCN. Tetrahedron 70:5580–5584

    Article  CAS  Google Scholar 

  31. Azadbakht R, Almasi T, Keypour H, Rezaeivala M (2013) A new asymmetric Schiff base system as fluorescent chemosensor for Al3+ ion. Inorg Chem Commun 33:63–67

    Article  CAS  Google Scholar 

  32. Zhou D, Sun C-Y, Chen C, Cui X-N, Li W-J (2015) Research of a highly selective fluorescent chemosensor for aluminum(III) ions based on photoinduced electron transfer. J Mol Struct 1079:315–320

    Article  CAS  Google Scholar 

  33. Cummings RT, Dizio JP, Krafft GA (1988) Photoactivable fluorophores. 2. Synthesis and photoactivation of functionalized 3-aroyl-2-(2-furyl)-chromones. Tetrahedron Lett 29:69–72

    Article  CAS  Google Scholar 

  34. Liu C-J, Yang Z-Y, Fan L, Jin X-L, An J-M, Cheng X-Y, Wang B-D (2015) Novel optical selective chromone Schiff base chemosensor for Al3+ ion. J Lumin 158:172–175

    Article  CAS  Google Scholar 

  35. Wang J, Yang Z-Y, Wang B-D, Yi X-Y, Liu Y-C (2009) Synthesis, characterization and DNA-binding properties of Ln(III) complexes with 6-ethoxy chromone-3-carbaldehyde benzoyl hydrazone. J Fluoresc 19:847–856

    Article  PubMed  CAS  Google Scholar 

  36. Wang S-T, Ge G, Guo S-F, Ma Y, Qiu F-C, Jian X-Y, Chen R-F (1991) Synthesis and application of 2-furoyl hydrazide. Chinese J Pharmaceuticals 22:396–397

    Google Scholar 

  37. Jang YK, Nam UC, Kwon HL, Hwang IH, Kim C (2013) A selective colorimetric and fluorescent chemosensor based-on naphthol for detection of Al3+ and Cu2+. Dyes Pigments 99:6–13

    Article  CAS  Google Scholar 

  38. Jia T-J, Cao W, Zheng X-J, Jin L-P (2013) A turn-on chemosensor based on naphthol–triazole for Al(III) and its application in bioimaging. Tetrahedron Lett 54:3471–3474

    Article  CAS  Google Scholar 

  39. Long GL, Winefordner JD (1983) Limit of detection a closer look at the IUPAC definition. Anal Chem 55:712A–724A

    Article  CAS  Google Scholar 

  40. Lohani CR, Kim JM, Chung SY, Yoon J, Lee KH (2010) Colorimetric and fluorescent sensing of pyrophosphate in 100 % aqueous solution by a system comprised of rhodamine B compound and Al3+complex. Analyst 135:2079–2084

    Article  PubMed  CAS  Google Scholar 

  41. Bandiera J, Dufaux M, Taarit YB (1997) Effect of the Br@nsted acid site strength on the cracking and dehydrogenating properties in propane conversion evidence for the soft-soft/hard-hard acid-base interaction concept. Appl Catal A Gen 148:283–300

    Article  CAS  Google Scholar 

  42. Park HM, Oh BN, Kim JH, Qiong W, Hwang IH, Jung KD, Kim C, Kim J (2011) Fluorescent chemosensor based-on naphthol–quinoline for selective detection of aluminum ions. Tetrahedron Lett 52:5581–5584

    Article  CAS  Google Scholar 

  43. Zhu G-L, Wang Y, Fu H-Y, Xu X-S, Cui Z-F, Ji X-H, Wu G-Z (2015) Photoinduced electron transfer between 2-methylanthraquinone and triethylamine in an ionic liquid: time-resolved EPR and transient absorption spectroscopy study. Spectrochim Acta Part A Mol Biomol Spectrosc 137:148–153

    Article  CAS  Google Scholar 

  44. Mondal S, Das T, Ghosh P, Maity A, Mallick A, Purkayastha P (2015) Surfactant chain length controls photoinduced electron transfer in surfactant bilayer protected carbon nanoparticles. Mater Lett 141:252–254

    Article  CAS  Google Scholar 

  45. Karagoz F, Guney O, Kandaz M, Bilgicli AT (2012) Acridine-derivated receptor for selective mercury binding based on chelation-enhanced fluorescence effect. J Lumin 132:2736–2740

    Article  CAS  Google Scholar 

  46. Foy GP, Pacey GE (1996) Determination of ATP using chelation-enhanced fluorescence. Talanta 43:225–232

    Article  PubMed  CAS  Google Scholar 

  47. Erdemoglu SB, Pyrzyniska K, Gucer S (2000) Speciation of aluminum in tea infusion by ion-exchange resins and flame AAS detection. Anal Chim Acta 411:81–89

    Article  CAS  Google Scholar 

  48. Li Y-P, Liu X-M, Zhang Y-H, Chang Z (2013) A fluorescent and colorimetric sensor for Al3+ based on a dibenzo-18-crown-6 derivative. Inorg Chem Commun 33:6–9

    Article  Google Scholar 

  49. Velmurugan K, Mathankumar S, Santoshkumar S, Amudha S, Nandhakumar R (2015) Specific fluorescent sensing of aluminium using naphthalene benzimidazole derivative in aqueous media. Spectrochim Acta Part A Mol Biomol Spectrosc 139:119–123

    Article  CAS  Google Scholar 

  50. Jeong JW, Rao BA, Son YA (2015) Rhodamine-chloronicotinaldehyde-based “OFF–ON” chemosensor for the colorimetric and fluorescent determination of Al3+ ions. Sensor Actuat B-Chem 208:75–84

    Article  CAS  Google Scholar 

  51. Kim KB, You DM, Jeon JH, Yeon YH, Kim JH, Kim C (2014) A fluorescent and colorimetric chemosensor for selective detection of aluminum in aqueous solution. Tetrahedron Lett 55:1347–1352

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (81171337). Gansu NSF (1308RJZA115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-yin Yang.

Additional information

Highlights • A novel chromone-derived Schiff-base ligand HCFH was designed and synthesized. • High selectivity and sensitivity of HCFH towards Al3+ was studied and explained. • “Turn on” fluorescence response of HCFH to Al3+ for real-time detection was observed.

• Binding stoichiometry between HCFH and Al3+ was determined systematically.

Electronic supplementary material

ESM 1

(DOC 1593 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Cr., Qin, Jc., Wang, Bd. et al. A Chromone-Derived Schiff-Base Ligand as Al3+ “Turn on” Fluorescent Sensor: Synthesis and Spectroscopic Properties. J Fluoresc 26, 345–353 (2016). https://doi.org/10.1007/s10895-015-1720-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1720-0

Keywords

Navigation