Skip to main content
Log in

Fluorescein-N-Methylimidazole Conjugate as Cu2+ Sensor in Mixed Aqueous Media Through Electron Transfer

  • RAPID COMMUNICATION
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new highly selective, chromogenic, and fluorogenic Cu2+ chemosensor, fluorescein-N-methylimidazole conjugate 1, and another fluorescein-N-imidazole conjugate 2 were synthesized and investigated by UV-visible and fluorescence spectroscopy. The sensing of Cu2+ quenches the emission band of 1 at λmax = 525 nm, with an association constant (K a = 1.0 x 107 M−1) and a stoichiometry of 1:1 in a buffered H2O: MeOH solution (4:1, pH = 7.4). The Cu2+ detection limit for chemosensor 1 is 37 nM. The presence of the N-methyl group in 1 increased the Cu2+ binding selectivity, resulting in a stronger binding constant and a broader pH working range (pH 5–10) in comparison to 2. The fluorescence in 1 and 2 is caused by electron transfer phenomenon from the imidazole nitrogen to fluorescein, which is readily inhibited by Cu2+ binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

References

  1. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40

    Article  CAS  Google Scholar 

  2. Yoon J, Kim SK, Singh NJ, Kim KS (2006) Imidazolium receptors for the recognition of anions. Chem Soc Rev 35:355–360

    Article  PubMed  CAS  Google Scholar 

  3. Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley, CA

    Google Scholar 

  4. Ghosh A, Trivedi PP, Timbalia SA, Griffin AT, Rahn JJ, Chan SS, Gohil VM (2014) Copper supplementation restores cytochrome c oxidase assembly defect in a mitochondrial disease model of COA6 deficiency. Hum Mol Genet 23:3596–3606

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Hellman NE, Gitlin JD (2002) Ceruloplasmin metabolism and function. Annu Rev Nutr 22:439–458

    Article  PubMed  CAS  Google Scholar 

  6. Olivares C, Solano F (2009) New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Pigm Cell Melanoma Res 22:750–760

    Article  CAS  Google Scholar 

  7. Klinman JP (2003) The multi-functional topa-quinone copper amine oxidases. Biochim Biophys Acta 1637:131–137

    Article  Google Scholar 

  8. Huster D (2014) Introduction to human disorders of copper metabolism. Ann N Y Acad Sci 1314:37–44

    Article  Google Scholar 

  9. Savelieff MG, Lee S, Liu Y, Lim MH (2013) Untangling amyloid-β, tau, and metals in Alzheimer’s disease. ACS Chem Biol 8:856–865

    Article  PubMed  CAS  Google Scholar 

  10. Matlack KE, Tardiff DF, Narayan P, Hamamichi S, Caldwell KA, Caldwell GA, Lindquist S (2014) Clioquinol promotes the degradation of metal-dependent amyloid-β (Aβ) oligomers to restore endocytosis and ameliorate Aβ toxicity. Proc Natl Acad Sci U S A 111:4013–4018

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Vonk WI, Kakkar V, Bartuzi P, Jaarsma D, Berger R, Hofker MH, Klomp LW Wijmenga C, Kampinga HH, Sluis B van de (2014) The copper metabolism MURR1 domain protein 1 (COMMD1) modulates the aggregation of misfolded protein species in a client-specific manner. PLoS One 9: 924–928

  12. McDonald AJ, Dibble JP, Evans EG, Millhauser GL (2014) A new paradigm for enzymatic control of α-cleavage and β-cleavage of the prion protein. J Biol Chem 289:803–813

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Xiao G, Fan Q, Wang X, Zhou B (2013) Huntington disease arises from a combinatory toxicity of polyglutamine and copper binding. Proc Natl Acad Sci U S A 110:14995–15000

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Burkhead JL, Lutsenko S (2013) The Role of Copper as a Modifier of Lipid Metabolism. In: Baez R. V. (ed) Lipid Metabolism, InTech, ISBN: 978-953-51-0944-0

  15. Nielsen TS, Jessen N, Jorgensen JO, Moller N, Lund S (2014) Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J Mol Endocrinol 52:R199–R222

    Article  PubMed  CAS  Google Scholar 

  16. Brady DC, Crowe MS, Turski ML, Hobbs GA, Yao X, Chaikuad A, Knapp S, Xiao KS, Campbell L, Thiele DJ, Counter CM (2014) Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature 509:492–496

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. WHO guidelines values for chemicals that are of health significance in drinking water, Guidelines for Drinking Water Quality, WHO, Geneva, 3rd Edn, 2008.

  18. Krämer R (1998) Fluorescent chemosensors for Cu2+ ions: fast, selective, and highly sensitive. Angew Chem Int Ed 37:772–773

    Article  Google Scholar 

  19. Pourreza N, Hoveizavi R (2005) Simultaneous preconcentration of Cu, Fe and Pb as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption determination. Anal Chim Acta 549:124–128

    Article  CAS  Google Scholar 

  20. Becker JS, Zoriy MV, Pickhardt C, Palomero-Gallagher N, Zilles K (2005) Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 77:3208–3216

    Article  PubMed  CAS  Google Scholar 

  21. Otero-Romaní J, Moreda-Piñeiro A, Bermejo-Barrera A, Bermejo-Barrera P (2005) Evaluation of commercial C18 cartridges for trace elements solid phase extraction from seawater followed by inductively coupled plasma-optical emission spectrometry determination. Anal Chim Acta 536:213–218

    Article  Google Scholar 

  22. Stankovic D, Roglic G, Mutic J, Andjelkovic I, Markovic M, Manojlovic D (2011) Determination of copper in water by anodic stripping voltammetry using Cu-DPABA–NA/GCE modified electrode. Int J Electrochem Sci 6:5617–5625

    CAS  Google Scholar 

  23. Twining B, Baines S, Fisher N, Jacobsen C, Maser J (2003) Quantification and localization of metal within natural plankton cells using a synchrotron x-ray fluorescence microprobe. J Phys IV 104:435–438

    CAS  Google Scholar 

  24. Wang M, Zhang D, Li M, Fan M, Ye Y, Y-f Z (2013) A rhodamine-cyclen conjugate as chromogenic and fluorescent chemosensor for copper ion in aqueous media. J Fluoresc 23:417–423

    Article  PubMed  CAS  Google Scholar 

  25. Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J (2008) A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem Soc Rev 37:1465–1472

    Article  PubMed  CAS  Google Scholar 

  26. Mandal S, Mandal SK, Khuda-Bukhsh AR, Goswami S (2015) Pyridoxal based fluorescent chemosensor for detection of copper(II) in solution with moderate selectivity and live cell imaging. J Fluoresc 25:1–11

    Article  Google Scholar 

  27. Jung HS, Kwon PS, Lee JW, Kim JI, Hong CS, Kim JW, Yan SH, Lee JY, Lee JH, Joo T, Kim JS (2009) Coumarin-derived Cu2+-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. J Am Chem Soc 131:2008–2012

    Article  PubMed  CAS  Google Scholar 

  28. Helal A, Rashid MHO, Choi CH, Kim H-S (2011) Chromogenic and fluorogenic sensing of Cu2+ based on coumarin. Tetrahedron 67:2794–2802

    Article  CAS  Google Scholar 

  29. Helal A, Kim S, Kim H-S (2011) Sensing of cyanide using highly selective thiazole-based Cu2+ chemosensor. Bull Kor Chem Soc 32:3123–3126

    Article  CAS  Google Scholar 

  30. Zheng H, Zhan X-Q, Biana Q-N, Zhanga X-J (2013) In vivo monitoring of hydrogen sulfide using a cresyl violet-based ratiometric fluorescence probe. Chem Commun 49:429–447

    Article  CAS  Google Scholar 

  31. Duan Y, Liu M, Sun W, Wang M, Liu S, Li Q (2009) Recent progress on synthesis of fluorescein probes. Mini Rev Org Chem 6:35–43

    Article  CAS  Google Scholar 

  32. Zhou Y, Li J, Chu K, Liu K, Yao C, Li J (2012) Fluorescence turn-on detection of hypochlorous acid via HOCl-promoted dihydrofluorescein-ether oxidation and its application in vivo. Chem Commun 48:4677–4679

    Article  CAS  Google Scholar 

  33. Xiong XQ, Song FL, Chen GW, Sun W, Wang JY, Gao P (2013) Construction of long-wavelength fluorescein analogues and their application as fluorescent probes. Chem Eur J 19:6538–6545

    Article  PubMed  CAS  Google Scholar 

  34. An JM, Yan MH, Yang ZY, Li TR, Zhou QX (2013) A turn-on fluorescent sensor for Zn(II) based on fluorescein-coumarin conjugate. Dyes Pigments 99:1–5

    Article  CAS  Google Scholar 

  35. Kim HJ, Park JE, Choi MG, Ahn S, Chang SK (2010) Selective chromogenic and fluorogenic signalling of Hg2+ ions using a fluorescein-coumarin conjugate. Dyes Pigments 84:54–58

    Article  CAS  Google Scholar 

  36. Egawa T, Koide Y, Hanaoka K, Komatsu T, Teraia T, Nagano T (2011) Development of a fluorescein analogue, TokyoMagenta, as a novel scaffold for fluorescence probes in red region. Chem Commun 47:4162–4164

    Article  CAS  Google Scholar 

  37. Ueno T, Urano Y, Setsukinai K, Takakusa H, Kojima H, Kikuchi K, Ohkubo K, Fukuzumi S, Nagano T (2004) Rational principles for modulating fluorescence properties of fluorescein. J Am Chem Soc 126:14079–14085

    Article  PubMed  CAS  Google Scholar 

  38. Bellina F, Cauteruccio S, Montib S, Rossi R (2006) Novel imidazole-based combretastatin a-4 analogues: evaluation of their in vitro antitumor activity and molecular modeling study of their binding to the colchicine site of tubulin. Bioorg Med Chem Lett 16:5757–5762

    Article  PubMed  CAS  Google Scholar 

  39. Bando T, Sugiyama H (2006) Synthesis and biological properties of sequence-specific DNA-alkylating pyrrole − imidazole polyamides. Acc Chem Res 39:935–944

    Article  PubMed  CAS  Google Scholar 

  40. Sun YF, Cui YP (2009) The synthesis, structure and spectroscopic properties of novel oxazolone-, pyrazolone- and pyrazoline-containing heterocycle chromophores. Dyes Pigments 81:27–34

    Article  CAS  Google Scholar 

  41. Peter W, Wilhelm K (2000) Ionic liquids—new “solutions” for transition metal catalysis angew. Chem. Int. Ed 39:3772–3789

    Google Scholar 

  42. Kumar A, Kim H-S (2015) N-(3-imidazolyl)propyl dansylamide as a selective Hg2+ sensor in aqueous media through electron transfer. Spectrochim Acta A 148:250–254

    Article  CAS  Google Scholar 

  43. Kumar A, Ghosh MK, Choi C-H, Kim H-S (2015) Selective fluorescence sensing of salicylic acids using a simple pyrenesulfonamide receptor. RSC Adv 5:23613–23621

    Article  CAS  Google Scholar 

  44. Kumar A, Kim H-S (2015) A pyrenesulfonyl-imidazolium derivative as a selective cyanide ion sensor in aqueous media. New J Chem 39:2935–2942

    Article  CAS  Google Scholar 

  45. Hens A, Maity A, Rajak KK (2014) N, N coordinating Schiff base ligand acting as a fluorescence sensor for zinc(II) and colorimetric sensor for copper(II), and zinc(II) in mixed aqueous media. Inorg Chim Acta 423:408–420

    Article  CAS  Google Scholar 

  46. Li ZY, Lin Y, Xia JL, Zhang H, Fan FY, Zeng QB (2011) Synthesis of novel diarylethene compounds containing two imidazole bridge units and tuning of their optical properties. Dyes Pigments 90:245–252

    Article  CAS  Google Scholar 

  47. Sivaraman G, Chellappa D (2013) Rhodamine based sensor for naked-eye detection and live cell imaging of fluoride ions. J Mater Chem B 1:5768–5772

    Article  CAS  Google Scholar 

  48. Ding J, Yuan L, Gao L, Chen J (2012) Fluorescence quenching of a rhodamine derivative: selectively sensing Cu2+ in acidic aqueous media. J Lumin 132:1987–1993

    Article  CAS  Google Scholar 

  49. Sivaraman G, Sathiyaraja V, Chellappa D (2014) Turn-on fluorogenic and chromogenic detection of Fe(III) and its application in living cell imaging. J Lumin 145:480–485

    Article  CAS  Google Scholar 

  50. Magde D, Wong R, Seybold PG (2002) Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem Photobiol 75:327–334

    Article  PubMed  CAS  Google Scholar 

  51. Yin W, Zhu H, Wang R (2014) A sensitive and selective fluorescence probe based fluorescein for detection of hypochlorous acid and its application for biological imaging. Dyes Pigments 107:127–132

    Article  CAS  Google Scholar 

  52. Zheng H, Zhan X-Q, Biana Q-N, Zhanga X-J (2013) Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors. Chem Commun 49:429–447

    Article  CAS  Google Scholar 

  53. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110:2620–2640

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Dujols V, Ford F, Czarnik AW (1997) A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. J Am Chem Soc 119:7386–7387

    Article  CAS  Google Scholar 

  55. Gunnlaugsson T, Leonard JP, Senechal K, Harte AJ (2004) Eu(III)–cyclen–phen conjugate as a luminescent copper sensor: the formation of mixed polymetallic macrocyclic complexes in water. Chem Commun:782–783

  56. Klein G, Kaufmann D, Schurch S, Reymond J-L (2001) A fluorescent metal sensor based on macrocyclic chelation. Chem Commun:561–562

  57. Katoh R, Suzuki K, Furube A, Kotani M, Tokumaru K (2009) Fluorescence quantum yield of aromatic hydrocarbon crystals. J Phys Chem C 113:2961–2965

    Article  CAS  Google Scholar 

  58. Kavallieratos K, Rosenberg JM, Chen W-Z, Ren T (2005) Fluorescent sensing and selective Pb(II) extraction by a dansylamide ion-exchanger. Am Chem Soc 127:6514–6515

    Article  CAS  Google Scholar 

  59. Connors KA Binding Constants: the Measurement of Molecular Complex Stability. New York: Wiley, 1987; pp 21–101; 339–343.

  60. Thordarson P (2011) Determining association constants from titration experiments in supramolecular chemistry. Chem Soc Rev 40:1305–1323

    Article  PubMed  CAS  Google Scholar 

  61. Fabbrizzi L, Licchelli M, Pallavicini P, Parodi L (1999) Taglietti A in transition metals in supramolecuar chemistry; sauvage, J. P., Ed. Fluorescent sensors for and with transition metals. John Wiley & Sons Ltd, Chichester

    Google Scholar 

  62. Ci YX (1984) Zhou TZ the coordinated complexes in analytical chemistry. Peking University Press, Beijing

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Center of Research Excellence in Nanotechnology (CENT) in King Fahd University of Petroleum and Minerals for providing funds and availing its facilities for analysis and Center of Research Excellence in Renewable Energy, King Fahd University of Petroleum and Minerals for providing us with the Spectrofluorometer for analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aasif Helal.

Electronic supplementary material

ESM 1

(DOCX 1312 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helal, A., Kim, HS., Yamani, Z.H. et al. Fluorescein-N-Methylimidazole Conjugate as Cu2+ Sensor in Mixed Aqueous Media Through Electron Transfer. J Fluoresc 26, 1–9 (2016). https://doi.org/10.1007/s10895-015-1713-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1713-z

Keywords

Navigation