Skip to main content
Log in

An Efficient and Sensitive Optical Sensor Based on Furosemide as a new Fluoroionophore for Determination of Uranyl ion

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new, simple and sensitive optical sensor for determination of uranyl ion (UO2 2+) in aqueous solutions by spectrofluorimetric technique was introduced. The fluorescence spectra and response characteristics of 4-chloro-2 (furan-2-ylmethylamino) - 5-sulfamoylbenzoic acid (Furosemide) to UO2 2+ was investigated. It showed preferable fluorescence response to UO2 2+. Thereby, an efficient and sensitive optical sensor based on the fluorescence enhancement of Furosemide as a new fluoroionophore for UO2 2+ determination at low concentration levels has been developed. The reaction was extremely rapid at room temperature, and the fluorescence intensity remains unchanged for at least 24 h. Also, the response mechanism of the present sensor is discussed. This optical sensor is useful owing to the sufficient capability for determination of UO2 2+ in various real samples. Apart from the high sensitivity, the procedure is very simple, fast, wider linear range and gains a low detection limit without any complicated equipment. The present sensor has been successfully tested for determination of UO2 2+ in real samples and the results obtained are comparable to inductively coupled plasma optical emission spectrometry (ICP-OES) measured which could be used as a promising tool in nuclear safeguards material accountability measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Biswasa S, Pathakb P, Roy S (2012) Spectrochim Acta A 91:222–227

    Article  Google Scholar 

  2. Nivens D, Zhang Y (2002) S. Angel. J Photochem Photobiol A Chem 152:167–173

    Article  CAS  Google Scholar 

  3. Lutfullah A, Mohd N, Rahman N, Azmi S (2008) J Hazard Mater 155:261–268

    Article  PubMed  CAS  Google Scholar 

  4. Shariati S, Yamini Y, Zanjanim M (2008) J Hazard Mater 156:583–590

    Article  PubMed  CAS  Google Scholar 

  5. Tagami K, Uchida S (2007) Anal Chim Acta 592:101–105

    Article  PubMed  CAS  Google Scholar 

  6. Rao T, Metilda P, Gladis J (2006) Talanta 68:1047–1064

    Article  PubMed  CAS  Google Scholar 

  7. Nivens D, Zhang Y, Angel S (2002) J Photochem Photobiol A Chem 152:167–173

    Article  CAS  Google Scholar 

  8. Zheng Z, Kang M, Wang C, Liu C, Grambow B, Duro L, Suzuki-Muresan T (2014) Chemosphere 107:373–378

    Article  PubMed  CAS  Google Scholar 

  9. Anwar M, Mohammad D (1989) J Radioanal Nucl Chem 134:45–51

    Article  CAS  Google Scholar 

  10. Currah J, Beamish F (1947) Anal Chem 19:609–612

    Article  CAS  Google Scholar 

  11. McMahon A (1993) Sci Total Environ 130:285–295

    Article  Google Scholar 

  12. Mlakar M, Branica M (1989) Anal Chim Acta 221:279–287

    Article  CAS  Google Scholar 

  13. Haskins S, Kelly D, Weir R (2011) J Radioanal Nucl Chem 287:471–478

    Article  CAS  Google Scholar 

  14. Wu M, Liao L, Zhao M, Lin M, Xiao X, Nie C (2012) Anal Chim Acta 729:80–84

    Article  PubMed  CAS  Google Scholar 

  15. Dietz M, Horwitz P, Sajdak L, Chiarizia R (2001) Talanta 54:1173–1184

    Article  PubMed  CAS  Google Scholar 

  16. Moghimi A (2008) Chin J Chem 26:1831–1836

    Article  CAS  Google Scholar 

  17. Elhefnawy OA, Zidan WI, Abo-Aly MM, Bakier E, Elsayed G (2014) J Radioanal Nucl Chem 299:1821–1833

    Article  CAS  Google Scholar 

  18. Elabd AA, Zidan WI, Abo-aly MM, Bakier E, Attia MS (2014) J Environ Radioact 134:99–108

    Article  PubMed  CAS  Google Scholar 

  19. Ensafi A, Far A, Meghdadi S (2009) J Hazard Mater 172:1069–1075

    Article  PubMed  CAS  Google Scholar 

  20. Firooza A, Ensafib A, Hajyani Z (2013) Sensors Actuators B 177:710–716

    Article  Google Scholar 

  21. Maji S, Viswanathan K (2009) J Lumin 129:1242–1248

    Article  CAS  Google Scholar 

  22. Vaughan A, Narayanaswamy R (1998) Sensors Actuators B Chem 51:368–376

    Article  CAS  Google Scholar 

  23. Cheng K (1958) Anal Chem 30:1027–1030

    Article  CAS  Google Scholar 

  24. Niboua D (2011) J Chem Eng 172:296–305

    Article  Google Scholar 

  25. International Conference on Hormonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use; ICH Harmonised Tripartite Guideline; Validation of Analytical Procedures: Text and Methodology Q2(R1); incorporated in November 2005.

  26. Elabd AA, Attia MS (2015) J Lumin 165:179–184

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Elabd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elabd, A.A., Elhefnawy, O.A. An Efficient and Sensitive Optical Sensor Based on Furosemide as a new Fluoroionophore for Determination of Uranyl ion. J Fluoresc 26, 271–276 (2016). https://doi.org/10.1007/s10895-015-1709-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1709-8

Keywords

Navigation