Skip to main content
Log in

Synthesis, characterization, DNA interactions, DNA cleavage, radical scavenging activity, antibacterial, anti-proliferative and docking studies of new transition metal complexes

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The compound N-(2-hydroxybenzylidene)-1-ethyl-1, 4-dihydro-7-methyl-4-oxo-1, 8 naphthyridine-3-carbohydrazide (LH) and its Cu (II), Co (II) and Zn (II) complexes were synthesized and characterized. The absorption spectral titrations and competitive DNA binding studies depicted those complexes of title compound bind to CT-DNA through intercalation. Interestingly [Cu (II)-(L2)] showed relatively high binding constant value (6.61 x 105 M−1) compared to [Co (II)-(L2)] (4.378× 105 M−1) and [Zn (II)-(L2)] (3.1x105 M−1). Ligand and its complexes were also examined for DNA nuclease activity against pBR-322 plasmid DNA, which showed that [Cu (II)-(L2)] had the best hydrolytic cleavage property displaying prominent double-strand DNA cleavage. In addition, antioxidant activities of the ligand and its metal complexes investigated through scavenging effects for DPPH radical in- vitro, indicated their potentiality as good antioxidants. The in vitro anti-bacterial study inferred the better anti-bacterial activity of [Cu (II)-(L2)] and this was also correlated theoretically by employing docking studies wherein [Cu (II)-(L2)] displayed good Gold score and Chem score. Finally the in vitro anti- proliferative activity of studied compounds was tested against HeLa and MCF-7 cell lines. Interestingly [Cu (II)-(L2)] displayed lower IC50 value and lower percentage of viability in both HeLa and MCF-7 cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Aggarwal N, Kumar R, Dureja P, Khurana JM (2012) Synthesis of novel nalidixic acid-based 1,3,4-thiadiazole and 1,3,4-oxadiazole derivatives as potent antibacterial agents. Chem Biol Drug Des 79:384–397

    Article  PubMed  CAS  Google Scholar 

  2. Leisher GY, Froelich EJ, Gruett MD, Bailey JH, Brundage PR (1962) 1,8Naphthyridine derivatives. A new Class of Chemotherapeutic Agents. J Med Pharm Chem 5:1063–1065

    Article  Google Scholar 

  3. Tornaletti S, Pedrini AM (1988) Studies on the interaction of 4-quinolones with DNA by DNA unwinding experiments. Biochim Biophys Acta 949:279–287

    Article  PubMed  CAS  Google Scholar 

  4. Grover G, Kini SG (2006) Synthesis and evaluation of new quinazolone derivatives of nalidixic acid as potential antibacterial and antifungal agents. Eur J Med Chem 41:256–262

    Article  PubMed  CAS  Google Scholar 

  5. Aggarwal N, Kumar R, Dureja P, Khurana JM (2011) Synthesis, antimicrobial evaluation and QSAR analysis of novel nalidixic acid based 1,2,4-triazole derivatives. Eur J Med Chem 46:4089–4099

    Article  PubMed  CAS  Google Scholar 

  6. Emmerson AM, Jones AM (2003) The quinolones: decades of development and use. J Antimicrob Chemother 51(suppl 1), 13–20

  7. Crumplin GC, Smith JT (1976) Nalidixic acid and bacterial chromosome replication. Nature 260:643–645

    Article  PubMed  CAS  Google Scholar 

  8. Gellert M, Mizuuchi K, O’dea MH, Nash HA (1976) DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci U S A 73:3872–3876

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Gellert M, Mizuuchi K, O’Dea MH, Itoh T, Tomizawa JI (1977) Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc Natl Acad Sci U S A 74:4772–4776

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Wang JC (1985) DNA topoisomerases. Annu Rev Biochem 54:665–697

    Article  PubMed  CAS  Google Scholar 

  11. Gootz TD, Brighty KE (1996) Fluoroquinolone anti-bacterials: SAR mechanism of action,resistance,and clinical aspects. Med Res Rev 16:433–486

    Article  PubMed  CAS  Google Scholar 

  12. Drlica K, Zhao X (1997) DNA gyrase, topoisomerase-IV and the 4-quinolones. Microbiol Mol Biol Rev 61:377–392

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Xiao-Dong Y, jinHua Z (2008) Synthesis and biological activity of hydrazone derivatives containing pyrazole. J Chem Res 9:489–491

    Google Scholar 

  14. Mamolo MG, Falagiani V, Zampieri D, Vio L, Banfi E (2001) Synthesis and anti mycobacterialactivity of [5-(pyridine-2-yl)-1,3,4-thiadiazol-2-yline-hydrathio]acetic acid aryl idene-hydrazide derivatives. Farmaco 56:587–592

    Article  PubMed  CAS  Google Scholar 

  15. Rollas S, Gulerman N, Erdeniz H (2002) Synthesis and antimicrobial activity of some new hydrazones of 4-flurobenzoic acid hydrazide and 3-acetyl-2,5-disubstituted-1,3,4-oxadiazolines. Farmaco 57:171

    Article  PubMed  CAS  Google Scholar 

  16. Kamel AM, Lobna MA, EI-Sayed ML, Mohamed IH, Rania HB (2006) Hydrazones of 2- aryl-quinoline-4-carboxylic acid hydrazides; synthesis and preliminary evaluation as antimicrobial agents. Bioorg Med Chem 14:8675–8682

    Article  Google Scholar 

  17. Ozdemir A, Turan-zitouni G, Kaplancikl ZA, Demirci F, Iscan G (2008) Studies on hydrazone derivatives as antifungal agents. J. Enzyme. Inhib. Med. Chem 23:470–475

    CAS  Google Scholar 

  18. Dimmock JR, Vashishtha SC, Stables JP (2000) Anticonvulsant properties of various acetylhydrazones, oxamoyhydrazones and semicarbazones deriveed from aromatic and unsaturated carbonyl compounds. Eur J Med Chem 35:241–248

    Article  PubMed  CAS  Google Scholar 

  19. Kalsi R, Shrimali M, Bhalla TN, Barathwal JP (2006) Synthesis and anti-inflammatory activity of indolyl azetidinones. Indian J Pharm Sci 41:353–359

    Google Scholar 

  20. Melnyk P, Leroux V, Sergheraert C, Grellier P (2006) Design. Synthesuis and in Vitro antimalarial Activity of Acylhydrazone Library Bioorg Med Chem Lett 16:31–35

    PubMed  CAS  Google Scholar 

  21. Patole J, Sandbhor U, Padhey S, Deobagkar DN, Anson CE, Powell A (2003) Structural chemistry and in vitro ant tubercular activity of acetyl pyridine benzoyl hydrazone and its copper complex against mycobacterium smegmatics. Bioorg Med Chem Litt 13:51–55

    Article  CAS  Google Scholar 

  22. Tomokazu H.I, Nobuharu A.O, Hiroshi K, Atsushi K. K (1994) Hydrazone derivatives, processes for production thereof, and uses thereof U.S. Patent 5304573

  23. More P.G,. Bhalvankar R.B, Patter S.C, (2001) J. Ind. Chem. Soc 78 (9):474–475

    CAS  Google Scholar 

  24. Kabeer AS, Baseer MA, Mote NA (2001) Asian J Chem 13(2):496–500

    Google Scholar 

  25. Song YM, Wu Q, Yang PJ, Luan NN, Wang LF, Liu YM (2006) J Inorg Biochem 100:1685

    Article  PubMed  CAS  Google Scholar 

  26. Kozurkova M, Sabolova D, Janovec L, Mikes J, Koval J, Ungvarsky J, Stefanisinova M, Fedorocko P, Kristian P, Imrich J (2008) Bioorg. Med Chem 16:3976

    Article  CAS  Google Scholar 

  27. Tan CP, Liu J, Chen LM, Shi S, Ji LN (2008) J Inorg Biochem 102:1644

    Article  PubMed  CAS  Google Scholar 

  28. Zuber G, Quada Jr JC, Hecht SMJ (1998) Am Chem Soc 120:9368

    Article  CAS  Google Scholar 

  29. Hecht SMJ (2000) Nat Protoc 63:158

    Article  CAS  Google Scholar 

  30. Metcalfe C, Thomas JA (2003) Chem Soc Rev 32:215

    Article  PubMed  CAS  Google Scholar 

  31. Silvestri A, Barone G, Ruisi G, Lo Giudice MT, Tumminello SJ (2004) Inorg Biochem 98:589

    Article  CAS  Google Scholar 

  32. Navarro M, Cisneros-Fajardo EJ, Sierralta A, Fernández-Mestre M, Silva P, Arrieche D, Marchán E (2003) J Biol Inorg Chem 8:401

    PubMed  CAS  Google Scholar 

  33. Corral E, Hotze ACG, Tooke DM, Spek A, Reedijk L (2006) J Inorg Chim Acta 359:830–838

    Article  CAS  Google Scholar 

  34. Hotze ACG, Faiz JA, Mourtzis N, Pascu GI, Webber PRA, Clarkson GJ, Yannakopoulou K, Pikramenou Z, Hannon MJ (2006) Dalton Trans 24:3025–3034

    Article  PubMed  Google Scholar 

  35. Ljubijankic N, Zahirovic A, Turkušic E, Kahrovic E (2013) Croat Chem Acta 86:215–222

    Article  CAS  Google Scholar 

  36. Lerman LS (1961) J Mol Biol 3:18–30

    Article  PubMed  CAS  Google Scholar 

  37. Wolfe A, Shimer GH, Meehan T (1987) Biochemistry 26:6392–6936

    Article  PubMed  CAS  Google Scholar 

  38. Dixit N, Koiri RK, Maurya BK, Trigun SK, Höbartner C, Mishra L (2011) J Inorg Biochem 105:256–267

    Article  PubMed  CAS  Google Scholar 

  39. Barton JK, Bertini I, Gray HB, Lippard SJ, Valentine JS (1994) Bioinorganic chemistry. University Science Press, Mill Valley, p. 455

    Google Scholar 

  40. Marmur J (1961) J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  41. Chen GJ, Qiao X, Qiao PQ, Xu GJ, Xu JY, Tian JL, Gu W, Liu X, Yan SP (2011) J Inorg Biochem 105:119–126

    Article  PubMed  CAS  Google Scholar 

  42. Chen X,. Xue L. X, Ju C. C, Wang K. Z (2013) Spectrochim. Acta A Mol Biomol Spectrosc 111: 196–203

    Article  CAS  Google Scholar 

  43. Arjmand F, Sayeed F, Muddassir M (2011) J Photochem Photobiol B 103:166–179

    Article  PubMed  CAS  Google Scholar 

  44. Tan J, Wang B, Zhu L (2009) Bioorg Med Chem 17:614–620

    Article  PubMed  CAS  Google Scholar 

  45. Li DD, Tian J-L, Gu W, Liu X, Yan SP (2009) Synthesis, X-ray Crystal Structures, DNA Binding and Nuclease Activities of Two Novel 1,2,4-Triazole-Based CuII Complexes page 5036–5045. doi:10.1002/ejic.200900763

  46. Li D, Tian J, Kou Y, Huang F, Chen G, Gu W, Liu X, Liao D, Cheng P, Yan S (2009) Dalton Trans. 3574–3583

  47. Lakowicz JR, Weber G (1973) Biochemistry 12:4161–4170

    Article  PubMed  CAS  Google Scholar 

  48. Thompson et Al & Mark. A “Arguslab 4.0.1” www.arguslab.com planaria software LLC, Seattle,WA.

  49. Jones G, Willett P, Glen RC (1995) J Mol Biol 245:43

    Article  PubMed  CAS  Google Scholar 

  50. Jones G, Willett P, Glen R. C, Leach A. R, Taylor R. J Mol Biol. 1997, 267, 727.

  51. Nissink J. W. M, Murray C, Hartshorn M, Verdonk M. L, Cole J. C, Taylor R, Proteins: Structure Function Bioinformatics 2002 499, 457.

  52. http://www.rcsb.org/pdb.

  53. Verdonk M. L, Cole J. C, Hartshorn M. J, Murray C.W, Taylor R. D. Proteins: Structure Function Bioinformatics. 2003, 52,609.

Download references

Acknowledgments

Financial assistance received from the Council of Scientific and Industrial Research, New Delhi, India [grants Ref: file no: 09/132(0791)/2012-EMR-I], is gratefully acknowledged. We would also like to thank Department of Bio-Chemistry, Osmania University, Hyderabad for providing anti-bacterial and cytotoxicity data. We thank to the Department of chemistry, Osmania University Hyderabad for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Sarala Devi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chennam, K.P., Ravi, M., Ushaiah, B. et al. Synthesis, characterization, DNA interactions, DNA cleavage, radical scavenging activity, antibacterial, anti-proliferative and docking studies of new transition metal complexes. J Fluoresc 26, 189–205 (2016). https://doi.org/10.1007/s10895-015-1701-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1701-3

Keywords

Navigation