Skip to main content

Advertisement

Log in

Room-Temperature Phosphorescence Turn-on Detection of DNA Based on Riboflavin-Modulated Manganese Doped Zinc Sulfide Quantum Dots

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A sensitive phosphorescent sensor based on riboflavin (RF)-modulated mercaptopropionic acid (MPA)-capped Mn-doped ZnS quantum dots (QDs) was developed and utilized as room-temperature phosphorescence (RTP) sensor for DNA detection. The RTP of the MPA-capped Mn-doped ZnS QDs was stored via photoinduced electron transfer by RF, and formed an electrochemically nonactive QDs/RF nanohybrids through electrostatic attraction. In the presence of DNA, RF could bind with DNA, which has a double helical structure, via electrostatic interaction and intercalation. RF can be removed from the surface of the QDs, thus releasing the RTP of the QDs. On the basis of this principle, an RTP sensor for DNA detection was developed. Under optimal conditions, the detection limit for DNA was 15 μg mL−1, the relative standard deviation was 1.9 %, and the method recovery ranged from 97 % to 103 %. The proposed method was applied to biological fluids, in which satisfactory results were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Willner I, Baron R, Willner B (2007) Integrated nanoparticle–biomolecule systems for biosensing and bioelectronics. Biosens Bioelectron 22:1841–1852

    Article  CAS  PubMed  Google Scholar 

  2. Zenkevich E, Cichos F, Shulga A, Petrov E, Blaudeck T, Von Borczyskowski C (2005) Nanoassemblies designed from semiconductor quantum dots and molecular arrays. J Phys Chem B 109:8679–8692

    Article  CAS  PubMed  Google Scholar 

  3. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  CAS  PubMed  Google Scholar 

  4. Yue Z, Lisdat F, Parak WJ, Hickey SG, Tu L, Sabir N, Dorfs D, Bigall NC (2013) Quantum-dot-based photoelectrochemical sensors for chemical and biological detection. ACS Appl Mater Interfaces 5:2800–2814

    Article  CAS  PubMed  Google Scholar 

  5. Sun J, Guo L, Xu H, Tang J, Xie J (2013) Self-assembly of quantum dots/denatured BSA-oligonucleotides bioconjugate and its application on aptameric gold nanoparticles-based biosensor for the determination of rHuEPO-α. Biosens Bioelectron 43:446–452

    Article  CAS  PubMed  Google Scholar 

  6. Cooper JK, Franco AM, Gul S, Corrado C, Zhang JZ (2011) Characterization of primary amine capped CdSe. ZnSe, and ZnS Quantum dots by FT-IR: Determination of Surface Bonding Interaction and Identification of Selective Desorption, Langmuir 27:8486–8493

    CAS  PubMed  Google Scholar 

  7. Wang Q, Yu X, Zhan G, Li C (2014) Fluorescent sensor for selective determination of copper ion based on N-acetyl-L-cysteine capped CdHgSe quantum dots. Biosens Bioelectron 54:311–316

    Article  PubMed  Google Scholar 

  8. Wang HF, He Y, Ji TR, Yan XP (2009) Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water. Anal Chem 81:1615–1621

    Article  CAS  PubMed  Google Scholar 

  9. Traviesa-Alvarez J, Costa-Fernandez J, Pereiro R, Sanz-Medel A (2007) Direct screening of tetracyclines in water and bovine milk using room temperature phosphorescence detection. Anal Chim Acta 589:51–58

    Article  CAS  PubMed  Google Scholar 

  10. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  PubMed  Google Scholar 

  11. Raymo FM, Yildiz I (2007) Luminescent chemosensors based on semiconductor quantum dots. Phys Chem Chem Phys 9:2036–2043

    Article  CAS  PubMed  Google Scholar 

  12. Yuan J, Guo W, Yang X, Wang E (2008) Anticancer drug-DNA interactions measured using a photoinduced electron-transfer mechanism based on luminescent quantum dots. Anal Chem 81:362–368

    Article  Google Scholar 

  13. Yildiz I, Tomasulo M, Raymo FM (2006) A mechanism to signal receptor-substrate interactions with luminescent quantum dots. P Nati Acad Sci USA 103:11457–11460

    Article  CAS  Google Scholar 

  14. Willard DM, Carillo LL, Jung J, Van Orden A (2001) CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay. Nano Lett 1:469–474

    Article  CAS  Google Scholar 

  15. Kumar M, Zhang D, Broyles D, Deo SK (2011) A rapid, sensitive, and selective bioluminescence resonance energy transfer (BRET)-based nucleic acid sensing system. Biosens Bioelectron 30:133–139

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Sheng P, Zhou L, Tong X, Shi L, Cai Q (2014) Fluorescence immunoassay of octachlorostyrene based on Fo¨ rster resonance energy transfer between CdTe quantum dots and rhodamine B. Biosens Bioelectron 60:52–56

    Article  CAS  PubMed  Google Scholar 

  17. Sun XY, Liu B, Sun YF, Yu Y (2014) DNA-length-dependent fluorescent sensing based on energy transfer in self-assembled multilayers. Biosens, Bioelectron

    Google Scholar 

  18. Peng H, Zhang L, Kjällman TH, Soeller C, Travas-Sejdic J (2007) DNA hybridization detection with blue luminescent quantum dots and dye-labeled single-stranded DNA. J Am Chem Soc 129:3048–3049

    Article  CAS  PubMed  Google Scholar 

  19. Shi L, Rosenzweig N, Rosenzweig Z (2007) Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors. Anal Chem 79:208–214

    Article  CAS  PubMed  Google Scholar 

  20. Raichlin S, Sharon E, Freeman R, Tzfati Y, Willner I (2011) Electron-transfer quenching of nucleic acid-functionalized CdSe/ZnS quantum dots by doxorubicin: a versatile system for the optical detection of DNA, aptamer-substrate complexes and telomerase activity. Biosens Bioelectron 26:4681–4689

    Article  CAS  PubMed  Google Scholar 

  21. He Y, Yan X (2011) Mn-doped ZnS quantum dots/methyl violet nanohybrids for room temperature phosphorescence sensing of DNA. Sci China Chem 54:1254–1259

    Article  CAS  Google Scholar 

  22. Yu Y, Chen Z, He S, Zhang B, Li X, Yao M (2014) Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode. Biosens Bioelectron 52:147–152

    Article  CAS  PubMed  Google Scholar 

  23. Tomasulo M, Yildiz I, Kaanumalle SL, Raymo FM (2006) pH-sensitive ligand for luminescent quantum dots. Langmuir 22:10284–10290

    Article  CAS  PubMed  Google Scholar 

  24. Callan JF, Mulrooney RC, Kamila S, McCaughan B (2008) Anion sensing with luminescent quantum dots-a modular approach based on the photoinduced electron transfer (PET) mechanism. J Fluoresc 18:527–532

    Article  CAS  PubMed  Google Scholar 

  25. Knowles KE, Tagliazucchi M, Malicki M, Swenson NK, Weiss EA (2013) Electron transfer as a probe of the permeability of organic monolayers on the surfaces of colloidal PbS quantum dots. J Phys Chem C 117:15849–15857

    Article  CAS  Google Scholar 

  26. Ruedas-Rama MJ, Hall EA (2008) A quantum dot–lucigenin probe for Cl. Analyst 133:1556–1566

    Article  CAS  PubMed  Google Scholar 

  27. Zhang JR, Huang WT, Zeng AL, Luo HQ, Li NB (2015) Ethynyl and π-stacked thymine-Hg2+ thymine base pairs enhanced fluorescence quenching via photoinduced electron transfer and simple and sensitive mercury ion sensing. Biosens Bioelectron 64:597–604

    Article  CAS  PubMed  Google Scholar 

  28. He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan C (2010) A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater 20:453–459

    Article  CAS  Google Scholar 

  29. Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11:426–437

    Article  CAS  PubMed  Google Scholar 

  30. Dolatabadi JEN, Mashinchian O, Ayoubi B, Jamali AA, Mobed A, Losic D, Omidi Y, de la Guardia M (2011) Optical and electrochemical DNA nanobiosensors. TrAC Trends Anal Chem 30:459–472

    Article  CAS  Google Scholar 

  31. Teles F, Fonseca L (2008) Trends in DNA biosensors. Talanta 77:606–623

    Article  CAS  Google Scholar 

  32. Qian Y, Tang D, Du L, Zhang Y, Zhang L, Gao F (2015) A novel signal-on electrochemical DNA sensor based on target catalyzed hairpin assembly strategy. Biosens Bioelectron 64:177–181

    Article  CAS  PubMed  Google Scholar 

  33. Wang X, Nan F, Zhao J, Yang T, Ge T, Jiao K (2015) A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity. Biosens Bioelectron 64:386–391

    Article  CAS  PubMed  Google Scholar 

  34. Zhao D, Li J, Yang T, He Z (2014) “Turn off–on” fluorescent sensor for platinum drugs-DNA interactions based on quantum dots. Biosens Bioelectron 52:29–35

    Article  CAS  PubMed  Google Scholar 

  35. Lo HC, Hsiung HI, Chattopadhyay S, Han HC, Chen CF, Leu JP, Chen KH, Chen LC (2011) Label free sub-picomole level DNA detection with Ag nanoparticle decorated Au nanotip arrays as surface enhanced Raman spectroscopy platform. Biosens Bioelectron 26:2413–2418

    Article  CAS  PubMed  Google Scholar 

  36. Ye S, Li H, Cao W (2011) Electrogenerated chemiluminescence detection of adenosine based on triplex DNA biosensor. Biosens Bioelectron 26:2215–2220

    Article  CAS  PubMed  Google Scholar 

  37. Ma DL, He HZ, Leung KH, Zhong HJ, Chan DSH, Leung CH (2013) Label-free luminescent oligonucleotide-based probes. Chem Soc Rev 42:3427–3440

    Article  CAS  PubMed  Google Scholar 

  38. Bensasson R, Land E, Truscott T (1983) Flash photolysis and pulse radiolysis: contributions to the chemistry of biology and medicine. Oxford, Pergamon

    Google Scholar 

  39. Hu YM, Wang XM, Fei D, Dong FQ, Ding LS (2008) Study on the interaction between riboflavin and herring sperm DNA by fluorescence spectrometry. Acta Chim Sin 66:1245–1251

    CAS  Google Scholar 

  40. Gong Y, Fan Z (2014) Melamine-modulated mercaptopropionic acid-capped manganese doped zinc sulfide quantum dots as a room-temperature phosphorescence sensor for detecting clenbuterol in biological fluids. Sensors Actuators B Chem 202:638–644

    Article  CAS  Google Scholar 

  41. Miao Y, Zhang Z, Gong Y, Zhang Q, Yan G (2014) Self-assembly of manganese doped zinc sulfide quantum dots/CTAB nanohybrids for detection of rutin. Biosens Bioelectron 52:271–276

    Article  CAS  PubMed  Google Scholar 

  42. Chung JH, Ah CS, Jang DJ (2001) Formation and distinctive decay times of surface-and lattice-bound Mn2+ impurity luminescence in ZnS nanoparticles. J Phys Chem B 105:4128–4132

    Article  CAS  Google Scholar 

  43. Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen. Probe for Structural fluctuations in Macromolecules, Biochemistry-us 12:4161–4170

    CAS  Google Scholar 

  44. Chen GZ (1990) Fluorescence analysis, Second edn. Science press, Beijing

    Google Scholar 

  45. Han G, Yang P (2002) Synthesis and characterization of water-insoluble and water-soluble dibutyltin (IV) porphinate complexes based on the tris (pyridinyl) porphyrin moiety, their anti-tumor activity in vitro and interaction with DNA. J Inorg Biochem 91:230–236

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education, China (20121404110001), the Fund from Shanxi Province Chemical Advantage of Key Discipline Construction Projects, China (912019) and the Fund from Shanxi Province Postgraduate Innovation Project, China (104075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhefeng Fan.

Electronic supplementary material

ESM 1

(DOC 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Fan, Z. Room-Temperature Phosphorescence Turn-on Detection of DNA Based on Riboflavin-Modulated Manganese Doped Zinc Sulfide Quantum Dots. J Fluoresc 26, 385–393 (2016). https://doi.org/10.1007/s10895-015-1699-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1699-6

Keywords

Navigation