Skip to main content

Advertisement

Log in

Spectroscopic Investigation and Photophysics of a D-π-A-π-D Type Styryl Pyrazine Derivative

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

E,E-2,5-bis(3,4-dimethoxystyryl)pyrazine (BDSP) has been prepared by aldol condensation between 2,5-dimethypyrazine and 3,4-dimthoxybenzaldehyde and characterized by IR, 1H NMR, 13C NMR and X-ray crystallography. The electronic absorption and emission properties of BDSP were studied in different solvents. BDSP displays a strong solvatochromic effect of the emission spectrum that is reflected by large red shifts of its fluorescence emission maximum on increasing the solvent polarity, indicating a large change in dipole moment of BDSP upon excitation due to photoinduced intramolecular charge transfer (PICT). Excited state intermolecular hydrogen bonding affects the energy of emission spectrum and fluorescence quantum yield of BDSP dye. The dye solutions (1 × 10−4 M) in DMSO, DMF, CH3CN and dioxane give laser emission in green region upon excitation by a 337.1 nm nitrogen pulse (λ = 337 nm). The tuning range, gain coefficient (α), emission cross – section (σe) and half-life energy (E1/2) has been determined. Ground and electronic excited states geometric optimization were performed using density functional theory (DFT) and time-dependent density functional theory (TD-DFT), respectively. A DFT natural bond analysis complemented the ICT. BDSP dye displays fluorescence quenching by colloidal silver nanoparticles (AgNPs). The fluorescence data reveal that radiative and non-radiative energy transfer play a major role in the fluorescence quenching mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Arias AC, Mackenzie JD, McCulloch I, Rivnay J, Salleo A (2010) Materials and applications for large area electronics: solution-based approaches. Chem Rev 110:3–24

    Article  PubMed  CAS  Google Scholar 

  2. Rahulan KM, Balamurugan S, Meena KS, Yeap GY, Kanakam CC (2014) Synthesis and nonlinear optical absorption of novel chalcone derivative compounds. Opt Laser Technol 56:142–145

    Article  CAS  Google Scholar 

  3. Singh H, Sindhu J, Khurana JM (2014) Determination of dipole moment, solvatochromic studies andapplication as turn off fluorescence chemosensor of new3-(4-(dimethylamino) phenyl)-1-(5-methyl-1-(naphthalen-1-yl)-1H-1,2,3-triazol-4-yl) prop-2-en-1-one. Sensors Actuators B 192:536–542

    Article  CAS  Google Scholar 

  4. Grabowski ZR, Rotkiewicz K, Retting W (2003) Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103:3899–4302

    Article  PubMed  Google Scholar 

  5. Jiang Y, McCarthy PK, Blanchard GJ (1994) The role of multiple electronic states in the dissipative nergy dynamics of coumarin 153. Chem Phys 183:249–267

    Article  CAS  Google Scholar 

  6. Huang Y, Cheng T, Li F, Huang C, Hou T, Yu A, Zhao X, Xu X (2002) Photophysical studies on the mono- and dichromophoric hemicyanine dyes I. Photoelectric conversion from the Dye modified ITO electrodes. J Phys Chem B106:10020–10030

    Article  Google Scholar 

  7. Shaikh M, Mohanty J, Singh PK, Bhasikuttan AC, Rajule RN, Satam VS, Bendre SR, Kanetkar VR, Pal H (2010) Contrasting solvent polarity effect on the photophysical properties of Two newly synthesized aminostyryl dyes in the lower and in the higher solvent polarity regions. J Phys Chem A 114:4507–4517

    Article  PubMed  CAS  Google Scholar 

  8. Kim HN, Guo Z, Zhu W, Yoon J, Tian H (2011) Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem Soc Rev 40:79–93

    Article  PubMed  CAS  Google Scholar 

  9. He GS, Tian LS, Zhang Q, Prasad PN (2008) Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem Rev 108:1245–1330

    Article  PubMed  CAS  Google Scholar 

  10. Li Z, Li Q (2011) Some new design strategies for second-order nonlinear optical polymers and dendrimers. J Polym Chem 2:2723–2740

    Article  CAS  Google Scholar 

  11. Castle RN (1962) Chemistry of heterocyclic compounds, vol 23. John Wiley and Sons, New York

    Google Scholar 

  12. Scaccianoce L, Feeder N, Teat SJ, Marseglia EA, Grimsdale AG, Holmes AB (2000) Acta Crystallogr C 56(10):1277–1279

    Article  PubMed  Google Scholar 

  13. Al- Hazmy SM, Babaqi AS, Daltrozzo E, Klink M, Sauter J, Ebeid EM (1999) A new diolefinic laser dye: 2,5-bis-2-(2-naphthyl)vinyl pyrazine(B2NVP). J Photochem Photobiol A Chem 122:17–22

    Article  CAS  Google Scholar 

  14. El-Daly SA, Ebeid EM, El-Hazmy SM, Babaqi AS (1993) Spectral life time and laser activity of 2,5-bis-2(1-naphthyl)vinyl pyrazine and 2,5-bis-2-(2-naphthyl)vinyl pyrazine. J Chem Sci 105(6):651–658

    Article  CAS  Google Scholar 

  15. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  PubMed  CAS  Google Scholar 

  16. Deng W, Goldys EM (2012) Plasmonic approach to enhanced fluorescence for applications in biotechnology and the life sciences. Langmuir 28(27):10152–10163

    Article  PubMed  CAS  Google Scholar 

  17. Fu Y, Zhang J, Lakowicz JR (2007) Plasmonic enhancement of singlemolecule fluorescence near a silver nanoparticle. J Fluoresc 17(6):811–816

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Kalele S, Deshpande AC, Singh SB, Kulkarni SK (2008) Tuning luminescence intensity of RHO6G dye using silver nanoparticles. Bull Mater Sci 31(3):541–544

    Article  CAS  Google Scholar 

  19. Basheer NS, Kumar BR, Kurian A, George SD (2013) Thermal lens probing of distant dependent fluorescence quenching of Rhodamine 6G by silver nanoparticles, J. Luminescence 137:225–229

    Article  Google Scholar 

  20. Pushpam S, Kottaisamy M, Ramakrishnan V (2013) Dynamic quenching study of 2-amino-3-bromo-1,4-naphthoquinone by titanium dioxide nano particles in solution (methanol). Spectrochim Acta A 114:272–276

    Article  CAS  Google Scholar 

  21. Pannipara M, Asiri AM, Alamry KA, Arshad MN, El-Daly SA (2014) Spectroscopic investigation, effect of solvent polarityand fluorescence quenching of a New D-π-a TypeChalcone derivative. J Fluoresc 24:1629–1638

    Article  PubMed  CAS  Google Scholar 

  22. Pannipara M, Asiri AM, Alamry KA, Arshad MN, El-Daly SA (2015) Synthesis, spectral behavior and photophysics of donor-acceptor kind of chalcones: excited state intramolecular charge transfer and fluorescence quenching studies. Spectrochim Acta A 136:1893–1902

    Article  CAS  Google Scholar 

  23. Pannipara M, Asiri AM, Alamry KA, Salam IA, El-Daly SA (2015) Spectral behavior and photophysical parameters of (2Z)-3-[4-(dimethylaminophenyl]-2-(4-fluorophenyl)prop-2-ene-nitrile(DPF) in different media. J Lumin 157:163–171

    Article  CAS  Google Scholar 

  24. Melhuish WH (1961) Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescent solute. J Physl Chem 65(2):229–235

    Article  CAS  Google Scholar 

  25. Agilent (2012) CrysAlis PRO. Agilent Technologies, Yarnton

    Google Scholar 

  26. Sheldrick GM, SHELXS, SHELXL (2008) A short history of SHELX. Acta Crystallogr A64:112

    Article  Google Scholar 

  27. Farrugia LJ (2012) WinGX and ORTEP for windows: an update. J Appl Crystallogr 45:849–854

    Article  CAS  Google Scholar 

  28. Spek AL (2009) Structure validation in chemical crystallography. Acta Crystallogr D651:48–155

    Google Scholar 

  29. Farrugia LJ (1999) WinGX suite for small-molecule single-crystal crystallography. J Apply Crystallogr 32:837–838

    Article  CAS  Google Scholar 

  30. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94(8):2319–2358

    Article  CAS  Google Scholar 

  31. Atvars TDZ, Bortolato CA, Brunelli D (1992) Electronic absorption and fluorescence spectra of xanthene dyes in polymers. J Photochem Photobiol A Chem 68:41–50

    Article  CAS  Google Scholar 

  32. Shim SC, Kim MS, Lee KT (1992) Photophysical properties and photoisomerization of aza derivatives of trans-2-styrylnaphthalene: trans-1-(2-pyrazinyl)-2-(n-quinoxalinyl)ethylene. J Photochem Photobiol A Chem 67:23–32

    Article  Google Scholar 

  33. El-Daly SA, Al-Hazmy SM, Ebeid EM, Vernigor EM (1995) Emission characteristics and photostability of 1,4-bis-{−(benzoxazolyl)vinyl]benzene. J Photochem Photobiol A Chem 91:199–204

    Article  CAS  Google Scholar 

  34. El-Daly SA, Asiri AM, Hussein MA, Al-Sehemi AG (2014) Spectroscopic and computational studies of 1,4-bis[b-(6-tertbutyl-2-benzoxazolyl)vinyl]benzene. J Lumin 148:317–324

    Article  CAS  Google Scholar 

  35. El-Daly SA, Ebeid EM (2014) Spectroscopic studies, fluorescence quenching by molecular oxygen and amplifief spontaneous emission of 1,4-bis[2-(2-pyridyl)vinyl]benzene. J Mol Struct 1063:213–218

    Article  CAS  Google Scholar 

  36. Shaikh M, Mohanty J, Singh PK, Bhasikuttan AC, Rajule RN, Satam VS, Bendre SR, Kanetkar VR, Pal H (2010) Contrasting solvent polarity effect on the photophysical properties of Two newly synthesized aminostyryl dyes in the lower and in the higher solvent polarity regions. J Phys Chem A114:4507–4519

    Article  Google Scholar 

  37. Shim T, Le MH, Kim D, Ouchi Y (2008) Comparison of photophysical properties of the hemicyanine dyes in ionic and nonionic solvents. J Phys Chem B 112:1906–1912

    Article  PubMed  CAS  Google Scholar 

  38. Birks JB (1973) Organic molecular photophysics. John Wiley and Sons, New York

    Google Scholar 

  39. El-Daly SA, Asiri AM, Khan SA, Alamry KA (2013) Spectral properties and micellization of 1-(2,5-dimethyl-thiophene-3-yl)-3-(2,4,5-trimethoxy-phenyl)-propenone(DTTP) in different media. J Lumin 134:819–824

    Article  CAS  Google Scholar 

  40. Jana S, Dalapati S, Ghosh S, Guchhait N (2013) Excited state intramolecular charge transfer process in 5-(4-dimethylamino-phenyl)- penta-2,4-dienoic acid ethyl ester and effect of acceptor functional groups. J Photochem Photobiol A Chem 261:31–40

    Article  CAS  Google Scholar 

  41. Dutta A, Dutta RK (2014) Fluorescence behavior of cis-methyl orange stabilized in cationic premicelles. Spectrochim Acta A Mol Biomol Spectrosc 126:270–279

    Article  PubMed  CAS  Google Scholar 

  42. Sierocki P, Maas H, Dragut P, Richardt G, Vogtle F, Cola LD, Brouwer FAM, Zink JI (2006) Hotoisomerization of azobenzene derivatives in nanostructured silica. J Phys Chem B 110:24390–24398

    Article  PubMed  CAS  Google Scholar 

  43. Sakamoto R, Kume S, Sugimoto M, Nishihara H (2009) Mistry trans–cis photoisomerization of azobenzene-conjugated dithiolato-bipyridine platinum(II) complexes: extension of photoresponse to longer wavelengths and photocontrollable tristability. Chem Eur J 15:1429–1439

    Article  PubMed  CAS  Google Scholar 

  44. Steven B (1971) Adv Photochem 8:161–226

    Article  Google Scholar 

  45. Kim DY, Cho HN, Kim CY (2000) Blue light emitting polymers. Prog Polym Sci 25:1089–1139

    Article  CAS  Google Scholar 

  46. Lippert E (1957) Spectroscopic determination of the dipole moment of aromatic compounds in the first excited singlet state. Z Elektrochem 61:962–975

    CAS  Google Scholar 

  47. Suppan P (1990) Invited review solvatochromic shifts: the influence of the medium on the energy of electronic states. J Photochem Photobiol A: Chem 50(3):293–330

    Article  CAS  Google Scholar 

  48. Lakowicz JR (ed) (2006) 3rd edn, Springer, New York, (chapter 6) p.209

  49. Lakowicz JR (ed)(1999) Principle of fluorescence spectroscopy, 2nd edn, Kluwer Academic / Plenium Publishers, New York, Chapter 6, p. 187

  50. Coe BJ, Harris JA, Asselberghs I, Clays K, Olbrechts G, Persoons A, Hupp JT, Johnson RC, Coles SJ, HursthouseMB NK (2002) Quadratic nonlinear optical properties of N-aryl stilbazolium dyes. Adv Funct Mater 12:110–116

    Article  CAS  Google Scholar 

  51. Gordon P, Gregory P (1987) Organic chemistry in colour. Chimia, Moskva

    Book  Google Scholar 

  52. Rinke M, Gusten H, Ache HJ (1986) Photophysical properties and laser performance of photostable UV laser dyes. 1.Substituted p-quaterphenyls. J Phys Chem 90(12):2661–2665

    Article  CAS  Google Scholar 

  53. Nair LG (1982) Dye lasers. Prog Quantum Electron 7:153–268

    Article  CAS  Google Scholar 

  54. Valverde-Aguilar G (2006) Photostability of laser dyes incorporated in formamide SiO2 ORMOSILs. Opt Mater 28:1209–1215

    Article  CAS  Google Scholar 

  55. Birks JB (1970) Photophysics of aromatic molecules, Wiley Interscience. Wiley, London, p 88

    Google Scholar 

  56. Strickler SJ, Berg RA (1962) Relationship between absorption intensity and fluorescence lifetime of molecules. J Chem Phys 37:814–822

    Article  CAS  Google Scholar 

  57. Lackowicz JR (2006) Principle of fluorescence spectroscopy, 3rd edn. Springer, New York, p 10, Chapter 1

    Book  Google Scholar 

  58. Padilha LA, Webster S, Przhonska OV, Hu H, Peceli D, Enstly TR, Bondar MV, Gerasov AO, Kovtun YP, Shandura MP, Kachlkovski AD, Hagan DJ, Van Stryland EW (2010) Efficient Two-photon absorbing acceptor-π-acceptor polymethine dyes. J Phys Chem A 114:6493–6501

    Article  PubMed  CAS  Google Scholar 

  59. Kumar GA, Unnikrishnan NV (1997) Solid State Commun 29:1049

    Google Scholar 

  60. Kumar GA, Unnikrishnan NV (2001) Energy transfer and optical gain studies of FDS: Rh B dye mixture investigated under cw laser excitation, J. Photochem &Photobiol. Atmos Chem Phys 144:107–117

    CAS  Google Scholar 

  61. Sakr MA, Gawad EA, Abou Kana MT, Ebeid EM (2015) Photophysical, photochemicalandlaserbehaviorofsomediolefiniclaser dyesinsolgelandmethylmethacrylate/2hydroxyethylmethacrylatecopolymermatrices. Opt Laser Technol 71:68–84

    Article  Google Scholar 

  62. El-Daly SA, El-Azim SA, El-Mekawey FM, Elbaradei BY, Shama SA, Asiri AM (2012) Photophysical parameters, excitation energy transfer and photoreactivity of 1,4-Bis(5-phenyl-2-oxazolyl)benzene(POPOP) laser dye. Int J Photonenergy. doi:10.1155/2012/458126, Article ID 458126, 10 pages

    Google Scholar 

  63. El-Daly SA, Rahman MM, Alamry KA, Asiri AM AM (2014) Florescence quenching of N,N-bis(2,5-di-tert-butylphenyl)-3,4 :9,10-perylenebis(dicarboximide)by silver nanoparticles. J Lumin 148:303–306

    Article  CAS  Google Scholar 

  64. El-Daly SA, Alamry KA, Asiri AM, Hussein MA (2012) Spectral characteristics and fluorescence quenching of N, N’-bis(4-pyridyl)-3,4:9,10-perylenebis(dicarboximide) (BPPD). J Lumin 132:2747–2752

    Article  CAS  Google Scholar 

  65. Förster TO (1996) In: Sinanoglu O, (ed.) Modern quantum chemistry, Academic Press, New York

  66. Laurette Schmitta and Helen Stoeckli-Evans Acta Cryst (2014) Crystal structure of 2,5-bis(4-methylpyridin-2-yl)pyrazine chloroform disolvate. E70:0893–0894

  67. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision a.02. Gaussian, Inc, Wallingford

    Google Scholar 

  68. Frisch A, Dennington RD II, Keith TA, Milliam J, Nielsen AB, Holder AJ, Hiscocks J (2007) Gaussview reference, version 5.0. Gaussian Inc, Pittsburgh

    Google Scholar 

  69. Gross EKU, Kohn W (1990) Time-dependent density-functional theory. Adv Quant Chem 21:255–291

    Article  CAS  Google Scholar 

  70. Cances E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041

    Article  CAS  Google Scholar 

  71. Silverstein RM, Bassler GC, Morrill TC (1991) Spectrometric identification of organic compounds. JohnWilley, Chistester pp. x + 419

  72. Karabacak M, Cinar M (2012) FT-IR, FT-Raman, UV spectra and DFT calculations on monomeric and dimeric structure of 2-amino- 5-bromobenzoic acid. Spectrochim Acta A 86:590–599

    Article  CAS  Google Scholar 

  73. Chattaraj PK, Maiti B (2003) HSAB principle applied to the time evolution of chemical reactions. J Am Chem Soc 125:2705–2710

    Article  PubMed  CAS  Google Scholar 

  74. Pearson RG (2005) Chemical hardness and density functional theory. J Chem Sci 117:369–377

    Article  CAS  Google Scholar 

  75. Aurell MJ, Domingo LR, Perez P, Contreras R (2004) A theoretical study on the regioselectivity of 1,3-dipolar cycloadditions using DFT-based reactivity indexes. Tetrahedron 60:11503–11509

    Article  CAS  Google Scholar 

  76. Reed EA, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–9026

    Article  CAS  Google Scholar 

  77. Reed EA, Weinhold F (1983) Natural bond orbital analysis of near- Hartree–Fock water dimer. J Chem Phys 78(6):4066–4073

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under No (130–685-D1435). The authors, therefore, gratefully acknowledge the DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samy A. El-Daly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Daly, S.A., Alamry, K.A. Spectroscopic Investigation and Photophysics of a D-π-A-π-D Type Styryl Pyrazine Derivative. J Fluoresc 26, 163–176 (2016). https://doi.org/10.1007/s10895-015-1698-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1698-7

Keywords

Navigation