Skip to main content
Log in

Cd-Cysteine Nanorods as a Fluorescence Sensor for Determination of Fe (III) in Real Samples

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new Cd-Cysteine complex nanorods (Cd-Cys NRs) were synthesized in one step at room temperature, and its morphology, structure and spectral properties were characterized by transmission electron microscopy (TEM), elemental analysis (EA), X-Ray diffraction (XRD), solid state and normal UV-Vis, Fourier transform infrared (FTIR) and spectrofluorometry. The developed Cd-Cys NRs were used as a fluorescence sensor for detection of Fe (III) in different aqueous matrices. The selectivity and sensitivity of the fabricated nano-sensor based on its fluorescence quenching in the presence of Fe (III) were probed according to the Stern-Volmer equation. The detection limit of the method was in micro-molar per liter range. Cd-Cys NRs response tested in different complex samples such as Rosemary plant leaves, exhibited a well-defined response. Anticoagulation measurements were performed to evaluate their blood biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jung HS, Han JH, Pradhan T, Kim S, Lee SW, Sessler JL, Kim TW, Kang C, Kim JS (2012) A cysteine-selective fluorescent probe for the cellular detection of cysteine. Biomaterials 33(3):945–953

    Article  PubMed  CAS  Google Scholar 

  2. Kim JS, Quang DT (2007) Calixarene-derived fluorescent probes. Chem Rev 107(9):3780–3799

    Article  PubMed  CAS  Google Scholar 

  3. De Silva AP, Gunaratne HN, Gunnlaugsson T, Huxley AJ, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97(5):1515–1566

    Article  PubMed  Google Scholar 

  4. Jung HS, Kwon PS, Lee JW, Kim JI, Hong CS, Kim JW, Yan S, Lee JY, Lee JH, Joo T (2009) Coumarin-derived Cu2+−selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. J Am Chem Soc 131(5):2008–2012

    Article  PubMed  CAS  Google Scholar 

  5. Neupane LN, Park J-Y, Park JH, Lee K-H (2013) Turn-on fluorescent chemosensor based on an amino acid for Pb (II) and Hg (II) ions in aqueous solutions and role of tryptophan for sensing. Org Lett 15(2):254–257

    Article  PubMed  CAS  Google Scholar 

  6. Han A, Liu X, Prestwich GD, Zang L (2014) Fluorescent sensor for Hg2+ detection in aqueous solution. Sensors Actuators B Chem 198:274–277

    Article  CAS  Google Scholar 

  7. Zhong K, Cai M, Hou S, Bian Y, Tang L (2014) A simple benzimidazole based fluorescent sensor for ratiometric recognition of Zn2+ in water. Bull Kor Chem Soc 35(2):489

    Article  CAS  Google Scholar 

  8. Hu SH, Liu DM, Tung WL, Liao CF, Chen SY (2008) Surfactant-free, self-assembled PVA-iron oxide/silica core–shell nanocarriers for highly sensitive, magnetically controlled drug release and ultrahigh cancer cell uptake efficiency. Adv Funct Mater 18(19):2946–2955

    Article  CAS  Google Scholar 

  9. Kawakubo S, Hagihara Y, Honda Y, Iwatsuki M (1999) Speciation of iron in river and tap waters by catalytic spectrophotometry using oxidation of o-phenylenediamine with hydrogen peroxide. Anal Chim Acta 388(1):35–43

    Article  CAS  Google Scholar 

  10. Niazi A, Zolgharnein J, Davoodabadi MR (2007) Simultaneous determination of aluminium and iron with hematoxylin using spectrophotometric and orthogonal signal correction-partial least squares in plant and water. Ann Chim 97(11–12):1181–1190

    Article  CAS  Google Scholar 

  11. Brinkmann M, Teuffel R, Laham N, Ehrlich R, Decker P, Lemonnier FA, Pascolo S (2007) Expression of iron transport proteins divalent metal transporter-1, Ferroportin-1, HFE and transferrin receptor-1 in human monocyte-derived dendritic cells. Cell Biochem Funct 25(3):287–296

    Article  PubMed  CAS  Google Scholar 

  12. Locatelli C (2004) Heavy metals in matrices of food interest: sequential voltammetric determination at trace and ultratrace level of copper, lead, cadmium, zinc, arsenic, selenium, manganese and iron in meals. Electroanalysis 16(18):1478–1486

    Article  CAS  Google Scholar 

  13. Unnithan MR, Vinod V, Anirudhan T (2002) Ability of iron (III)-loaded carboxylated polyacrylamide-grafted sawdust to remove phosphate ions from aqueous solution and fertilizer industry wastewater: adsorption kinetics and isotherm studies. J Appl Polym Sci 84(13):2541–2553

    Article  CAS  Google Scholar 

  14. Hunt RC, Davis AA (1992) Release of iron by human retinal pigment epithelial cells. J Cell Physiol 152(1):102–110

    Article  PubMed  CAS  Google Scholar 

  15. Safavi A, Abdollahi H (2002) Simultaneous kinetic determination of Fe (III) and Fe (II) by H-point standard addition method. Talanta 56(4):699–704

    Article  PubMed  CAS  Google Scholar 

  16. Costa RCC, Araújo AN (2001) Determination of Fe (III) and total Fe in wines by sequential injection analysis and flame atomic absorption spectrometry. Anal Chim Acta 438(1):227–233

    Article  CAS  Google Scholar 

  17. van den Berg CM (2006) Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene. Anal Chem 78(1):156–163

    Article  PubMed  Google Scholar 

  18. Andersen JE (2005) A novel method for the filterless preconcentration of iron. Analyst 130(3):385–390

    Article  PubMed  CAS  Google Scholar 

  19. Arnold GL, Weyer S, Anbar A (2004) Fe isotope variations in natural materials measured using high mass resolution multiple collector ICPMS. Anal Chem 76(2):322–327

    Article  PubMed  CAS  Google Scholar 

  20. Huber JK (1999) Determination of Cu, Fe, Mn, and Zn in blood fractions by SEC-HPLC-ICP-AES coupling. Analyst 124(5):657–663

    Article  PubMed  Google Scholar 

  21. Singh N, Kaur N, Dunn J, MacKay M, Callan JF (2009) A new fluorescent chemosensor for iron (III) based on the β-aminobisulfonate receptor. Tetrahedron Lett 50(8):953–956

    Article  CAS  Google Scholar 

  22. Mao J, He Q, Liu W (2010) An rhodamine-based fluorescence probe for iron (III) ion determination in aqueous solution. Talanta 80(5):2093–2098

    Article  PubMed  CAS  Google Scholar 

  23. Tripathy SK, Woo JY, Han C-S (2013) Colorimetric detection of Fe (III) ions using label-free gold nanoparticles and acidic thiourea mixture. Sensors Actuators B Chem 181:114–118

    Article  CAS  Google Scholar 

  24. Liu X-L, Zhu Y-J (2009) A precursor nanowire templated route to CdS nanowires. Mater Lett 63(12):1085–1088

    Article  CAS  Google Scholar 

  25. Xiong S, Xi B, Xu D, Wang C, Feng X, Zhou H, Qian Y (2007) L-cysteine-assisted tunable synthesis of PbS of various morphologies. J Phys Chem C 111(45):16761–16767

    Article  CAS  Google Scholar 

  26. Xiang J, Cao H, Wu Q, Zhang S, Zhang X, Watt AA (2008) L-cysteine-assisted synthesis and optical properties of Ag2S nanospheres. J Phys Chem C 112(10):3580–3584

    Article  CAS  Google Scholar 

  27. Chen X, Zhou Y, Peng X, Yoon J (2010) Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev 39(6):2120–2135

    Article  PubMed  CAS  Google Scholar 

  28. Lill R, Mühlenhoff U (2006) Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu Rev Cell Dev Biol 22:457–486

    Article  PubMed  CAS  Google Scholar 

  29. Chen Y, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74(19):5132–5138

    Article  PubMed  CAS  Google Scholar 

  30. Tang Z, Kotov NA, Giersig M (2002) Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297(5579):237–240

    Article  PubMed  CAS  Google Scholar 

  31. Yong S-M, Muralidharan P, Jo SH, Kim DK (2010) One-step hydrothermal synthesis of CdTe nanowires with amorphous carbon sheaths. Mater Lett 64(14):1551–1554

    Article  CAS  Google Scholar 

  32. Chua JH, Chee R-E, Agarwal A, Wong SM, Zhang G-J (2009) Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays. Anal Chem 81(15):6266–6271

    Article  PubMed  CAS  Google Scholar 

  33. You HS, Choi KS, Bae PK, Kim KN, Jang HG, Kim Y-R, Kim CH (2009) Preparation and characterization of various surface-modified semiconductor nanocrystals. Notes 30(12):3137

    CAS  Google Scholar 

  34. Huang X-J, Choi Y-K (2007) Chemical sensors based on nanostructured materials. Sensors Actuators B Chem 122(2):659–671

    Article  CAS  Google Scholar 

  35. Yoe JH, Jones AL (1944) Colorimetric determination of iron with disodium-1, 2-dihydroxybenzene-3, 5-disulfonate. Ind Eng Chem Anal Ed 16(2):111–115

    Article  CAS  Google Scholar 

  36. Liu X-L, Zhu Y-J, Zhang Q, Li Z-F, Yang B (2012) Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes. Mater Res Bull 47(12):4263–4265

    Article  CAS  Google Scholar 

  37. Parsons JG, Dokken KM, McClure J, Gardea-Torresdey JL (2013) FTIR, XAS, and XRD study of cadmium complexes with l-cysteine. Polyhedron 56:237–242

    Article  CAS  Google Scholar 

  38. Monshi A, Foroughi MR, Monshi MR (2012) Modified Eq. 2 to estimate more accurately Nano-crystallite size using XRD. World J Nano Sci Eng 2:154

    Article  Google Scholar 

  39. Pretsch E, Clerc T, Seibl J, Simon W (1989) Tables of spectral data for structure determination of organic compounds. Springer, Berlin, pp 205–210

  40. Giusti MM, Wrolstad RE (2001) Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Current protocols in food analytical chemistry. Wiley, New York, pp 150–180

  41. An X, Cao C, Yu X (2010) Fabrication of biocompatible Zn–cysteine nanowires and their application in selective fluorescence detection of Cu2+. J Nanosci Nanotechnol 10(12):8356–8361

    Article  PubMed  CAS  Google Scholar 

  42. Doak J, Gupta R, Manivannan K, Ghosh K, Kahol P (2010) Effect of particle size distributions on absorbance spectra of gold nanoparticles. Phys E Low-Dim Syst Nanostruct 42(5):1605–1609

    Article  CAS  Google Scholar 

  43. Martinez CE, McBride MB (1998) Coprecipitates of Cd, Cu, Pb and Zn in iron oxides: solid phase transformation and metal solubility after aging and thermal treatment. Clay Clay Miner 46(5):537–545

    Article  CAS  Google Scholar 

  44. Patoczka J, Johnson R, Scheri J (1998) Trace heavy metals removal with ferric chloride. In: Proceedings of Water Environment Federation Industrial Wastes Technical Conference, Nashville, TN. pp 1–14

  45. Weerakkody NS, Caffin N, Lambert LK, Turner MS, Dykes GA (2011) Synergistic antimicrobial activity of galangal (Alpinia galanga), rosemary (Rosmarinus officinalis) and lemon iron bark (Eucalyptus staigerana) extracts. J Sci Food Agric 91(3):461–468

    Article  PubMed  CAS  Google Scholar 

  46. Kaloustian J, Portugal H, Pauli A, Pastor J (2002) Chemical, chromatographic, and thermal analysis of rosemary (Rosmarinus officinalis). J Appl Polym Sci 83(4):747–756

    Article  CAS  Google Scholar 

  47. Huang N, Yang P, Leng Y, Chen J, Sun H, Wang J, Wang G, Ding P, Xi T, Leng Y (2003) Hemocompatibility of titanium oxide films. Biomaterials 24(13):2177–2187

    Article  PubMed  CAS  Google Scholar 

  48. Radojevic M, Bashkin VN (1999) Practical environmental analysis. Royal Society of Chemistry, London

    Google Scholar 

  49. Liang Z-Q, Wang C-X, Yang J-X, Gao H-W, Tian Y-P, Tao X-T, Jiang M-H (2007) A highly selective colorimetric chemosensor for detecting the respective amounts of iron (II) and iron (III) ions in water. New J Chem 31(6):906–910

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Bahman Mansouri Motlagh for his special helps on anticoagulation measurements and blood sample analyzing, and University of Birjand Research Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Ghiamati.

Electronic supplementary material

ESM 1

(DOCX 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiamati, E., Boroujerdi, R. Cd-Cysteine Nanorods as a Fluorescence Sensor for Determination of Fe (III) in Real Samples. J Fluoresc 26, 135–147 (2016). https://doi.org/10.1007/s10895-015-1693-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1693-z

Keywords

Navigation