Skip to main content
Log in

Evaluation of DNA Binding, Radicals Scavenging and Antimicrobial Studies of Newly Synthesized N-Substituted Naphthalimides: Spectroscopic and Molecular Docking Investigations

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this study, we investigated a new series of naphthalimide based Schiff base compounds as potential DNA binding, antioxidant and antimicrobial agents. The structural characterization of synthesized compounds was carried out with the aid of elemental analysis and spectroscopic techniques (UV–vis., IR, 1H and 13C NMR). The DNA binding properties of target compounds against Ct-DNA (calf thymus) have been investigated in detail by numerous biophysical techniques (UV–vis, fluorescence, ethidium bromide displacement assay, Time resolved fluorescence, viscosity, cyclic voltammetry and circular dichorism) and the evidences have suggested that the test compounds could interact with DNA via intercalative binding. The extent of DNA binding (Kb) of these compounds follow the order of 3b (3.33 × 104 M−1) > 3a (2.25 × 104 M−1) > 3c (2 × 104 M−1), suggesting that compound 3b binds more strongly to Ct- DNA than the compounds 3a and 3c. Molecular docking results further support intercalative binding of test compounds with DNA. The binding energies of docked compounds (3a-3c) were found to be −8.20 to −8.69 kcal/ mol, suggesting greater binding affinity to Ct-DNA. The synthesized compounds displayed potential antimicrobial activities against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae and Salmonella typhimurium. Compound 3c has emerged as most active against all the four tested bacterial strains with MIC value in the range of 0.031–0.062 mg/mL. In the mutagenicity studies, all the test compounds were found to be non-mutagenic both in the presence and absence of metabolic activation. Furthermore, the antioxidant activity experiments show that these compounds exhibited potential scavenging activities against DPPH and H2O2 radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen Z, Liang X, Zhang H, Xie H, Liu J, Xu Y, Zhu W, Wang Y, Wang X, Tan S, Kuang D, Qian X (2010) A new class of naphthalimide-based antitumor agents that inhibit Topoisomerase II and induce lysosomal membrane permeabilization and apoptosis. J Med Chem 53:2589–2600

    Article  CAS  PubMed  Google Scholar 

  2. Fuente RDL, Sonawane ND, Arumainayagam D, Verkman AS (2006) Small molecules with antimicrobial activity against E. coli and P. aeruginosa identified by throughput screening. Br J Pharmacol 49:551–559

    Article  Google Scholar 

  3. Tischer M, Sologub L, Pradel G, Holzgrabe U (2010) The bisnaphthalimides as new active lead compounds against Plasmodium falciparum. Bioorg Med Chem 18:2998–3003

    Article  CAS  PubMed  Google Scholar 

  4. Xu Y, Qian X, Yao W, Mao P, Cui J (2003) Novel naphthalimide hydroperoxide Photonucleases: the role of Thiocyclic-fused area and the difference in spectra, photochemistry and photobiological activity. Bioorg Med Chem 11:5427–5433

    Article  CAS  PubMed  Google Scholar 

  5. Qian X, Li Y, Xu Y, Liu Y, Qu B (2004) Highly-efficient DNA photocleavers with long wavelength absorptions: thio-heterocyclic fused naphthalimides containing aminoalkyl side chains. Bioorg Med Chem Lett 14:2665–2668

    Article  CAS  PubMed  Google Scholar 

  6. Ingrassia L, Lefranc F, Kiss R, Mijatovic T (2009) Naphthalimides and azonafides as promising anti-cancer agents. Curr Med Chem 16:1192–1213

    Article  CAS  PubMed  Google Scholar 

  7. Gregor KAM, Robertson MJ, Young KA, Kleist LV, Stahlschmidt W, Whiting A, Chau N, Robinson PJ, Haucke V, Mc Cluskey A (2014) Development of 1, 8-Naphthalimides as Clathrin Inhibitors. J Med Chem 57:131–143

    Article  Google Scholar 

  8. Cao H, Chang V, Hernandez R, Heagy MD (2005) Matrix screening of substituted N-Aryl-1,8-naphthalimides reveals new dual fluorescent dyes and unusually bright pyridine derivatives. J Org Chem 70:4929–4934

    Article  CAS  PubMed  Google Scholar 

  9. Duke RM, Gunlaugsson T (2007) Selective fluorescent PET sensing of fluoride (F) using naphthalimide–thiourea and –urea conjugates. Tetrahedron Lett 48:8043–8047

    Article  CAS  Google Scholar 

  10. Gan J, Song QL, Hou XY, Chen K, Tian H (2004) 1,8-Naphthalimides for non-doping OLEDs: the tunable emission color from blue, green to red. J Photochem Photobiol A Chem 162:399–406

    Article  CAS  Google Scholar 

  11. Zhang YY, Zhou CH (2011) Synthesis and activities of naphthalimide azoles as a new type of antibacterial and antifungal agents. Bioorg Med Chem Lett 21:4349–4352

    Article  CAS  PubMed  Google Scholar 

  12. Brana MF, Cacho M, Garcia MA, Pascual-Teresa B, Ramos A, Dominguez MT, Pozuelo JM, Abradelo C, Rey-Stolle MF, Yuste M, Banez-Coronel M, Lacal JC (2004) New analogues of amonafide and elinafide, containing aromatic heterocycles: Synthesis, antitumor activity, molecular modeling, and DNA binding properties. J Med Chem 47:1391–1399

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Yang ZY, Wang MF (2009) Synthesis, characterization, DNA binding properties and antioxidant activity of Ln(III) complexes with hesperetin-4-one-(benzoyl) hydrazone. Eur J Med Chem 44:4585–4595

    Article  CAS  PubMed  Google Scholar 

  14. Kashanian S, Javanmardi S, Chitsazan A, Paknejad M, Omidfar K (2012) Fluorometric study of fluoxetine DNA binding. J Photochem Photobiol B 113:1–6

    Article  CAS  PubMed  Google Scholar 

  15. Tong C, Xiang G, Bai Y (2010) Interaction of paraquat with Calf thymus DNA: a Terbium (III) luminescent probe and multispectral study. J Agric Food Chem 58:5257–5262

    Article  CAS  PubMed  Google Scholar 

  16. Guo H, Cai C, Gong H, Chen X (2011) Multi-spectroscopic method study the interaction of anti-inflammatory drug ketoprofen and calf thymus DNA and its analytical application. Spectrochimic Acta Part A A79:92–96

    Article  Google Scholar 

  17. Kalanur SS, Katrahalli U, Seetharamappa J (2009) Electrochemical studies and spectroscopic investigations on the interaction of an anticancer drug with DNA and their analytical applications. J Electroanal Chem 636:93–100

    Article  CAS  Google Scholar 

  18. Oehlers L, Mazzitelli CL, Brodbelt JS, Rodriguez M, Kerwin S (2004) Evaluation of complexes of DNA duplexes and novel benzoxazoles or benzimidazoles by Electro spray ionization mass spectrometry. J Am Soc Mass Spectrom 15:1593–1603

    Article  CAS  PubMed  Google Scholar 

  19. Jangir DK, Charak S, Mehrotra R, Kundu S (2011) FTIR and circular dichroism spectroscopic study of interaction of 5-fluorouracil with DNA. J Photochem Photobiol B 105:143–148

    Article  CAS  PubMed  Google Scholar 

  20. Cusumano M, Pietro MLD, Giannetto A, Nicolo F, Rotondo E (1998) Noncovalent interactions of Platinum (II) square planar complexes containing ligands out-of-plane with DNA. Inorg Chem 37:563–568

    Article  CAS  PubMed  Google Scholar 

  21. Vijesh AM, Isloor AM, Telkar S, Arulmoli T, Fun HK (2013) Molecular docking studies of new imidazole derivatives for antimicrobial properties. Arabian J Chem 6:197–204

    Article  CAS  Google Scholar 

  22. Xie L, Xu Y, Wang F, Liu J, Qian X, Cui J (2009) Synthesis of new amonafide analogues via coupling reaction and their cytotoxic evaluation and DNA-binding studies. Bioorg Med Chem 17:804–810

    Article  CAS  PubMed  Google Scholar 

  23. Zhao L, Li J, Li Y, Liu J, Wirth T, Li Z (2012) Selenium-containing naphthalimides as anticancer agents: design, synthesis and bioactivity. Bioorg Med Chem 20:2558–2563

    Article  CAS  PubMed  Google Scholar 

  24. Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res 455:29–60

    Article  CAS  PubMed  Google Scholar 

  25. Arriaga-Alba M, Ruiz-Pérez NJ, Sánchez-Navarrete J, López de Angel B, Flores-Lozada J, Blasco JL (2013) Antimutagenic evaluation of vitamins B1, B6 and B12 in vitro and in vivo, with the Ames test. Food Chem Toxicolol 53:228–234

    Article  CAS  Google Scholar 

  26. Vicini P, Geronikaki A, Incerti M, Busonera B, Poni G, Cabras CA, Colla PL (2003) Synthesis and biological evaluation of Benzo[d]isothiazole, Benzothiazole and Thiazole Schiff bases. Bioorg Med Chem 11:4785–4789

    Article  CAS  PubMed  Google Scholar 

  27. Cheng K, Zheng QZ, Hou J, Zhou Y, Liu CH, Zhao J, Zhu HL (2010) Synthesis, molecular modeling and biological evaluation of PSB as targeted antibiotics. Bioorg Med Chem 18:2447–2455

    Article  CAS  PubMed  Google Scholar 

  28. Karthikeyan MS, Prasad DJ, Poojary B, Bhat KS, Holla BS, Kumari NS (2006) Synthesis and biological activity of Schiff and mannich bases bearing 2, 4-dichloro-5-fluorophenyl moiety. Bioorg Med Chem 14:7482–7489

    Article  CAS  PubMed  Google Scholar 

  29. Kumar KS, Ganguly S, Veerasamy R, Clercq ED (2010) Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)H-ones. Eur J Med Chem 5:5474–5479

    Article  Google Scholar 

  30. Pu-Su Z, Jie S, Xiao-Jun S, Li D, Fang-Fang J (2011) Syntheses, crystal structures and property studies on Cu(II) and Co(II) complexes with 1,8-Naphthalimide Schiff base Chinese. J Struct Chem 30:346–353

    Google Scholar 

  31. Arish D, Nair MS (2011) Synthesis, spectroscopic, antimicrobial, DNA binding and cleavage studies of some metal complexes involving symmetrical bidentate N, N donor Schiff base ligand. Spectrochim Acta A 82:191–199

    Article  CAS  Google Scholar 

  32. Anbu S, Kandaswamy M (2011) Electrochemical, magnetic, catalytic, DNA binding and cleavage studies of new mono and binuclear copper(II) complexes. Polyhedron 30:123–131

    Article  CAS  Google Scholar 

  33. Ghosh S, Banik D, Roy A, Kundu N, Kuchlyan J, Sarkar N (2014) Spectroscopic investigation of the binding interactions of a membrane potential molecule in various supra molecular confined environments: contrasting behavior of surfactant molecules in relocation or release of the probe between nano carriers and DNA surface. Phys Chem Chem Phys 16:25024–25038

    Article  CAS  PubMed  Google Scholar 

  34. Rajendiran V, Murali M, Suresh E, Palaniandavar M, Periasamy VS, Akbarsha MA (2008) Non-covalent DNA binding and cytotoxicity of certain mixed-ligand ruthenium(II) complexes of 2,2 -dipyridylamine and diimines. Dalton Trans. 2157–2170

  35. Miliauskas G, Venskutonis PR, Beek TAV (2004) Screening of radical scavenging activity of some medicinal and aromatic plant extract. Food Chem 85:231–237

    Article  CAS  Google Scholar 

  36. Ruch RJ, Cheng SJ, Klaininig JE (1980) Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogen 10:1003–1008

    Article  Google Scholar 

  37. Maron DM, Ames BN (1983) Revised methods for Salmonella mutagenicity test. Mutat Res 113:175–215

    Google Scholar 

  38. Wang R, Fu Y, Lai L (1997) A new atom-additive method for calculating partition coefficients. J Chem Inf Comput Sci 37:615–621

    Article  CAS  Google Scholar 

  39. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development setting. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  40. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kapple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2323

    Article  CAS  PubMed  Google Scholar 

  41. Wolfe A, Shimer GH, Meehan T (1987) Polycyclic Aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry 26:6392–6396

    Article  CAS  PubMed  Google Scholar 

  42. Barton JK, Danishefsky AT, Goldberg JM (1984) Tris(phenanthroline) ruthenium(II): stereo selectivity in binding to DNA. J Am Chem Soc 106:2172–2176

    Article  CAS  Google Scholar 

  43. Shah A, Zaheer M, Qureshi R, Akhter Z, Nazar MF (2010) Voltammetric and spectroscopic investigations of 4-nitrophenylferrocene interacting with DNA. Spectrochim Acta A 75:1082–1087

    Article  Google Scholar 

  44. Arjmand F, Muddassir M, Yousuf I (2014) Design and synthesis of enantiomeric (R) and (S)-copper (II) and diorganotin(IV)-based antitumor agents: Their in vitro DNA binding profile, cleavage efficiency and cytotoxicity studies. J Photochem Photobiol B 136:62–71

    Article  CAS  PubMed  Google Scholar 

  45. Arjmand F, Yousuf I, Hadda T, Toupet L (2014) Synthesis, crystal structure and anti proliferative activity of Cu(II) nalidixicacide DACH conjugate: Comparative in vitro DNA/RNA binding profile, cleavage activity and molecular docking studies. Eur J Med Chem 81:76–88

    Article  CAS  PubMed  Google Scholar 

  46. Sowrirajan C, Yousuf S, Vijayaraj MVEI (2014) Binding of flavanone with-CD/ct-DNA: a spectroscopic investigation. Turk J Chem 38:725–738

    Article  CAS  Google Scholar 

  47. Kypr J, Kejnovska I, Renciuk D, Vorlıckova M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37:1713–1725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Jose D, Porschke D (2004) Dynamics of the B-A transition of DNA double helices. Nucleic Acids Res 32:2251–2258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Sigman DS, Mazumder A, Perrin DM (1993) Chemical nucleases. Chem Rev 93:2295–2316

    Article  CAS  Google Scholar 

  50. Wang B, Yang ZY, Crewdson P, Wang D (2007) Synthesis, crystal structure and DNA-binding studies of the Ln (III) complex with 6-hydroxychromone-3-carbaldehyde benzoyl hydrazone. J Inorg Biochem 101:1492–1504

    Article  CAS  PubMed  Google Scholar 

  51. Chu X, Shen GL, Jiang JH, Kang TF, Xiong B, Yu RQ (1998) Voltammetric studies of the interaction of daunomycin anticancer drug with DNA and analytical applications. Anal Chim Acta 373:29–38

    Article  CAS  Google Scholar 

  52. Aslanoglu M (2006) Electrochemical and spectroscopic studies of the interaction of Proflavine with DNA. Anal Sci 22:439–443

    Article  CAS  PubMed  Google Scholar 

  53. Latha P, Kodisundaram P, Sundararajan ML, Jeyakumar T (2014) Synthesis, characterization, crystal structure and theoretical study of a compound with benzodiazole ring: antimicrobial activity and DNA binding. Spectrochim Acta Part A 129:429–437

    Article  CAS  Google Scholar 

  54. Erena Y, Özata A (2014) Determination of mutagenic and cytotoxic effects of Limonium globuliferum aqueous extracts by Allium, Ames, and MTT tests. Rev Bras Farmacogn 24:51–59

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank to University Grant Commission, New Delhi for financial support through Major Research Project (F.No. 41-238/2012) and Mr. Pattan Sirajuddin. Nayab is also thankful to UGC for meritorious BSR Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahis Uddin.

Ethics declarations

Conflict of Interest

The authors confirm that this article content has no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1405 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayab, P.S., Pulaganti, M., Chitta, S.K. et al. Evaluation of DNA Binding, Radicals Scavenging and Antimicrobial Studies of Newly Synthesized N-Substituted Naphthalimides: Spectroscopic and Molecular Docking Investigations. J Fluoresc 25, 1905–1920 (2015). https://doi.org/10.1007/s10895-015-1683-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1683-1

Keywords

Navigation