Advertisement

Journal of Fluorescence

, Volume 25, Issue 6, pp 1867–1874 | Cite as

Influence of Solvent Polarizability on the Keto-Enol Equilibrium in 4-[5-(naphthalen-1-ylmethyl)-1,3,4-thiadiazol-2-yl]benzene-1,3-diol

  • Arkadiusz Matwijczuk
  • Andrzej Górecki
  • Daniel Kamiński
  • Beata Myśliwa-Kurdziel
  • Leszek Fiedor
  • Andrzej Niewiadomy
  • Grzegorz P. Karwasz
  • Mariusz Gagoś
ORIGINAL ARTICLE

Abstract

This work presents spectroscopic studies of the keto–enol equilibrium induced by solvent polarizability in 4-[5-(naphthalen-1-ylmethyl)-1,3,4-thiadiazol-2-yl]benzene-1,3-diol a strong antiproliferative and anticancer thiadiazol derivative. Electronic absorption, steady state and time resolved fluorescence, and infrared spectroscopies were applied to investigate the keto and enol forms of this compound in a series of polar and non-polar solvents. The enol form dominates in polar solvents while, surprisingly, the keto form dominates in non-polar solvents with high average electric dipole polarizability e.g. n-alkenes. The electronic absorption spectrum of this derivative is more dependent on spatially averaged electric dipole polarizability of the solvent than on Kirkwood’s correlation or on Lorenz-Lorenz electric polarizability. By analogy of n-alkanes to the alkyl parts of lipids, one can expect that the transformation of 1,3,4-thiadiazoles to the keto form may be facilitated in the hydrophobic core of the lipid membrane. Such a transition may be of great practical importance for the design of biologically active pharmaceutics, which are able to interact with the hydrophobic regions of cell membranes in a specific manner.

Keywords

1,3,4-thiadiazoles Intramolecular proton transfer Keto-enol tautomery Molecular spectroscopy 

Notes

Acknowledgments

This research was partly financed by the National Science Centre of Poland on the basis of decision no. DEC-2012/05/B/NZ1/00037 to MG, a grant from the University of Life Science in Lublin (TKF/MN/5 to AM), and a grant from the Foundation for Polish Science (TEAM/2010-5/3 to LF).

References

  1. 1.
    Juszczak M, Matysiak J, Brzana W, Niewiadomy A, Rzeski W (2008) Evaluation of the antiproliferative activity of 2-(monohalogenophenylamino)-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazoles. Arzneimittelforschung 58(7):353–357. doi: 10.1055/s-0031-1296519 PubMedGoogle Scholar
  2. 2.
    Juszczak M, Matysiak J, Niewiadomy A, Rzeski W (2011) The activity of a new 2-amino-1,3,4-thiadiazole derivative 4ClABT in cancer and normal cells. Folia Histochem Cytobiol 49(3):436–444CrossRefPubMedGoogle Scholar
  3. 3.
    Matysiak J, Los R, Malm A, Karpinska MM, Glaszcz U, Rajtar B, Polz-Dacewicz M, Wesolowska-Trojanowska M, Niewiadomy A (2012) Synthesis and antibacterial activity of novel fused 1,3-thiazoles and 1,3-thiazines incorporating a 2,4-dihydroxyphenyl residue. Arch Pharm 345(4):302–313. doi: 10.1002/ardp.201100251 CrossRefGoogle Scholar
  4. 4.
    Matysiak J, Nasulewicz A, Pelczynska M, Switalska M, Jaroszewicz I, Opolski A (2006) Synthesis and antiproliferative activity of some 5-substituted 2-(2,4-dihydroxyphenyl)-1,3,4-thiadiazoles. Eur J Med Chem 41(4):475–482. doi: 10.1016/j.ejmech.2005.12.007 CrossRefPubMedGoogle Scholar
  5. 5.
    Skrzypek A, Matysiak J, Karpinska MM, Niewiadomy A (2013) Synthesis and anticholinesterase activities of novel 1,3,4-thiadiazole based compounds. J Enzym Inhib Med Chem 28(4):816–823. doi: 10.3109/14756366.2012.688041 CrossRefGoogle Scholar
  6. 6.
    Skrzypek A, Matysiak J, Niewiadomy A, Bajda M, Szymanski P (2013) Synthesis and biological evaluation of 1,3,4-thiadiazole analogues as novel AChE and BuChE inhibitors. Eur J Med Chem 62:311–319. doi: 10.1016/j.ejmech.2012.12.060 CrossRefPubMedGoogle Scholar
  7. 7.
    Gagos M, Matwijczuk A, Kaminski D, Niewiadomy A, Kowalski R, Karwasz GP (2011) Spectroscopic studies of intramolecular proton transfer in 2-(4-fluorophenylamino)-5-(2,4-dihydroxybenzeno)-1,3,4-thiadiazole. J Fluoresc 21(1):1–10. doi: 10.1007/s10895-010-0682-5 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Wang JBR (1996) Tautomeric equilibria of hydroxypyridines in different solvents:an ab initio study. J Phys Chem 100:16141–16146. doi: 10.1021/jp961295z CrossRefGoogle Scholar
  9. 9.
    Lu JHB, Yan H (1999) Thermodynamic studies of chemical equilibrium in supercritical carbon. J Supercrit Fluids 5(2):135–143CrossRefGoogle Scholar
  10. 10.
    Nihan Yonet NB, Yurtsever M, Yagci Y (2007) Spectroscopic and theoretical investigation of capillary-induced keto–enol tautomerism of phenacyl benzoylpyridinium-type photoinitiators. Polym Int 56:525–531CrossRefGoogle Scholar
  11. 11.
    Tong YAA (1996) Spectroscopic studies of the keto end enol tautomers of 1Phenyl-3-methyl-4-benzyl-5-pyrazolone. Microchem J 53:34–41CrossRefGoogle Scholar
  12. 12.
    Koll A (2003) Specific features of intramolecular proton transfer reaction in Schiff bases. Int J Mol Sci 4:434–444CrossRefGoogle Scholar
  13. 13.
    Rospenk M, Król-Starzomska I, Filarowski A, Koll A (2002) Proton transfer and self-association of sterically modified Schiff bases. Chem Phys 287(1–2):113–124Google Scholar
  14. 14.
    Fujii TKK, Kawauchi O, Tanaka N (1997) Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si–Al glasses prepared by the sol–gel method. J Phys Chem B 101(50):10631–10637CrossRefGoogle Scholar
  15. 15.
    Hoser AA, Kaminski DM, Matwijczuk A, Niewiadomy A, Gagos M, Wozniak K (2013) On polymorphism of 2-(4-fluorophenylamino)-5-(2,4-dihydroxybenzeno)-1,3,4-thiadiazole (FABT) DMSO solvates. CrystEngComm 15(10):1978–1988. doi: 10.1039/c3ce26778d CrossRefGoogle Scholar
  16. 16.
    Kaminski DM, Hoser AA, Gagos M, Matwijczuk A, Arczewska M, Niewiadomy A, Wozniak K (2010) Solvatomorphism of 2-(4-fluorophenylamino)-5-(2,4-dihydroxybenzeno)-1,3,4-thiadiazole chloride. Cryst Growth Des 10(8):3480–3488. doi: 10.1021/cg1003319 CrossRefGoogle Scholar
  17. 17.
    Murthy ASN, Balasubramanian A, Rao CNR (1962) Spectroscopic study of keto-enol equilibria. Can J Chem 50:2267–2271CrossRefGoogle Scholar
  18. 18.
    Reichardt C (2003) Solvents and solvent effects in organic chemistry. Wiley-VCH, WeinheimGoogle Scholar
  19. 19.
    Lide DR (2007) CRC handbook of chemistry and physics, vol. Taylor and Francis, Boca RatonGoogle Scholar
  20. 20.
    Lakowicz J (2006) Principles of fluorescence spectroscopy. Springer, New YorkCrossRefGoogle Scholar
  21. 21.
    Kaminski DM, Matwijczuk A, Pociecha D, Gorecka E, Niewiadomy A, Dmowska M, Gagos M (2012) Effect of 2-(4-fluorophenylamino)-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole on the molecular organisation and structural properties of the DPPC lipid multibilayers. Biochim Biophys Acta 1818(11):2850–2859. doi: 10.1016/j.bbamem.2012.07.013 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Arkadiusz Matwijczuk
    • 1
    • 4
  • Andrzej Górecki
    • 3
  • Daniel Kamiński
    • 2
  • Beata Myśliwa-Kurdziel
    • 4
  • Leszek Fiedor
    • 4
  • Andrzej Niewiadomy
    • 2
  • Grzegorz P. Karwasz
    • 5
  • Mariusz Gagoś
    • 6
  1. 1.Department of BiophysicsUniversity of Life Sciences in LublinLublinPoland
  2. 2.Department of ChemistryUniversity of Life Sciences in LublinLublinPoland
  3. 3.Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
  4. 4.Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
  5. 5.Aleksander Jabłoński Institute of PhysicsNicolaus Copernicus UniversityToruńPoland
  6. 6.Department of Cell Biology, Institute of Biology and BiochemistryMaria Curie-Skłodowska UniversityLublinPoland

Personalised recommendations