Skip to main content
Log in

Pyridoxal Based Fluorescent Chemosensor for Detection of Copper(II) in Solution With Moderate Selectivity and Live Cell Imaging

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A pyridoxal-based fluorescent probe HL was synthesized for the detection of Cu2+ in methanol with moderate selectivity. Upon addition of Cu2+, to the solution of the probe in methanol exhibited a remarkable change in emission at 500 nm. With the limit of detection of 10 μM, the probe could well meet the recommended (less than 32 μM in drinking water) of the World Health Organization (WHO). The intracellular Cu2+ imaging behaviour of HL was carried out on HeLa cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis. Chem Rev 106:1995–2044

    Article  CAS  PubMed  Google Scholar 

  2. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549

    Article  CAS  PubMed  Google Scholar 

  3. Radisky D, Kaplan J (1999) Regulation of transition metal transport across the yeast plasma membrane. J Biol Chem 274:4481–4484

    Article  CAS  PubMed  Google Scholar 

  4. Chan YH, Chen J, Liu Q, Wark SE, Son DH, Batteas JD (2010) Ultrasensitive copper(II) detection using plasmon-enhanced and photo-brightened luminescence of CdSe quantum dots. Anal Chem 82:3671–3678

    Article  CAS  PubMed  Google Scholar 

  5. Multhaup G, Schlicksupp A, Hesse L, Beher D, Ruppert T, Masters CL, Beyreuther K (1996) The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). Science 271:1406–1409

    Article  CAS  PubMed  Google Scholar 

  6. Lovstad RA (2004) A kinetic study on the distribution of Cu(II)-ions between albumin and transferrin. BioMetals 17:111–113

    Article  CAS  PubMed  Google Scholar 

  7. World Health Organization (2011) Guidelines for drinking-water quality

  8. Bings NH, Bogaerts A, Broekaert JAC (2008) Anal Chem 80:4317–4347

    Article  CAS  PubMed  Google Scholar 

  9. Siripinyanond A, Worapanyanond S, Shiowatana J (2005) Field-flow fractionation-inductively coupled plasma mass spectrometry: an alternative approach to investigate metal-humic substances interaction. Environ Sci Technol 39:3295–3301

    Article  CAS  PubMed  Google Scholar 

  10. Tanyanyiwa J, Hauser PC (2002) High-voltage contactless conductivity detection of metal ions in capillary electrophoresis. Electrophoresis 23:3781–3786

    Article  CAS  PubMed  Google Scholar 

  11. Xiang Y, Tong AJ, Jin PY, Ju Y (2006) New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity. Org Lett 8:2863–2866

    Article  CAS  PubMed  Google Scholar 

  12. Huang CC, Yang Z, Lee KH, Chang HT (2007) Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew Chem Int Ed 46:6824–6828

    Article  CAS  Google Scholar 

  13. Sirilaksanapong S, Sukwattanasinitt M, Rashatasakhon P (2012) 1,3,5-Triphenylbenzene fluorophore as a selective Cu2+ sensor in aqueous media. Chem Commun 48:293–295

    Article  CAS  Google Scholar 

  14. Huang L, Cheng J, Xie KF, Xi PX, Hou FP, Li ZP, Xie GQ, Shi YJ, Liu HY, Bai DC, Zeng ZZ (2011) Cu(2+)-selective fluorescent chemosensor based on coumarin and its application in bioimaging. Dalton Trans 40:10815–10817

    Article  CAS  PubMed  Google Scholar 

  15. Wampler JE, Churchich JE (1969) Phosphorescence of pyridoxal. J Biol Chem 244:1477–1480

    CAS  PubMed  Google Scholar 

  16. Eliot AC, Kirsch JF (2004) Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu Rev Biochem 73:383–415

    Article  CAS  PubMed  Google Scholar 

  17. John RA (1995) Pyridoxal phosphate-dependent enzymes. Biochim Biophys Acta 1248:81–96

    Article  PubMed  Google Scholar 

  18. Toney MD (2005) Reaction specificity in pyridoxal phosphate enzymes. Arch Biochem Biophys 433:279–287

    Article  CAS  PubMed  Google Scholar 

  19. Christen P, Metzler DE (1985) Transaminases. Wiley, New York

    Google Scholar 

  20. Hayashi H, Mizuguchi H, Miyahara I, Islam MM, Ikushiro H, Nakajima Y, Hirotsu K, Kagamiyama H (2003) Strain and catalysis in aspartate aminotransferase. Biochim Biophys Acta 1647:103–109

    Article  CAS  PubMed  Google Scholar 

  21. Liu W, Peterson PE, Langston JA, Jin X, Zhou X, Fisher AJ, Toney MD (2005) Kinetic and crystallographic analysis of active site mutants of Escherichia coli gamma-aminobutyrate aminotransferase. Biochemistry 44:2982–2992

    Article  CAS  PubMed  Google Scholar 

  22. Fogle EJ, Liu W, Woon ST, Keller JW, Toney MD (2005) Role of Q52 in catalysis of decarboxylation and transamination in dialkylglycine decarboxylase. Biochemistry 44:16392–16404

    Article  CAS  PubMed  Google Scholar 

  23. Sun S, Toney MD (1999) Evidence for a two-base mechanism involving tyrosine-265 from arginine-219 mutants of alanine racemase. Biochemistry 38:4058–4065

    Article  CAS  PubMed  Google Scholar 

  24. Watanabe A, Yoshimura T, Mikami B, Hayashi H, Kagamiyama H, Esak NJ (2002) Reaction mechanism of alanine racemase from bacillus stearothermophilus: X-ray crystallographic studies of the enzyme bound with n-(5′-phosphopyridoxyl)alanine. Biol Chem 277:19166–19172

    Article  CAS  Google Scholar 

  25. Major DT, Gao J (2006) A combined quantum mechanical and molecular mechanical study of the reaction mechanism and alpha-amino acidity in alanine racemase. J Am Chem Soc 128:16345–16357

    Article  CAS  PubMed  Google Scholar 

  26. Schirch V, Szebenyi DME (2005) Serine hydroxymethyltransferase revisited. Curr Opin Chem Biol 9:482–487

    Article  CAS  PubMed  Google Scholar 

  27. Paiardini A, Contestabile R, Aguanno SD, Pascarella S, Bossa F (2003) Threonine aldolase and alanine racemase: novel examples of convergent evolution in the superfamily of vitamin B6-dependent enzymes. Biochim Biophys Acta 1647:214–219

    Article  CAS  PubMed  Google Scholar 

  28. Brazeau BJ, Johnso BJ, Wilmot CM (2004) Copper-containing amine oxidases. Biogenesis and catalysis; a structural perspective. Arch Biochem Biophys 428:22–31

    Article  CAS  PubMed  Google Scholar 

  29. Mure M, Mills SA, Klinman JP (2002) Catalytic mechanism of the topa quinone containing copper amine oxidases. Biochemistry 41:9269–9278

    Article  CAS  PubMed  Google Scholar 

  30. Smith AT, Majtan T, Freeman KM, Su Y, Kraus JP, Burstyn JN (2011) Cobalt cystathionine β-synthase: a cobalt-substituted heme protein with a unique thiolate ligation motif. Inorg Chem 50:4417–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Prior FGR (1985) Theoretical involvement of vitamin B6 in tumour initiation. Med Hypotheses 16:421–428

    Article  CAS  PubMed  Google Scholar 

  32. Bender DA, Bowden JF, Coulsen WF, Dewji MR, Sutton J, Symes EK (1988) Current topics in nutrition and disease: clinical and physiological applications of vitamin B6, New York, U.S.A.

  33. Snell EE (1945) The vitamin B6 group. V. The reversible interconversion of pyridoxal and pyridoxamine by transamination reactions. J Am Chem Soc 67:194–197

    Article  CAS  Google Scholar 

  34. Guirard BM, Snell EE (1981) In: Florkin M, Stotz EH (eds) Comprehensive Biochemistry. Elsevier, Amsterdam

    Google Scholar 

  35. Mehansho H, Henderson LM (1980) Transport and accumulation of pyridoxine and pyridoxal by erythrocytes. J Biol Chem 255:11901–11907

    CAS  PubMed  Google Scholar 

  36. Casella L, Gullotti M (1983) Coordination modes of histidine. 6. Transamination in the 2-formylpyridine-amino acid-metal ion systems. Stereochemistry of zinc(II) and copper(II) complexes of N-(2-pyridylmethylidene)amino acids. Inorg Chem 22:2259–2266

    Article  CAS  Google Scholar 

  37. Walsh C (1978) Chemical approaches to the study of enzymes catalyzing redox transformations. Annu Rev Biochem 47:881–931

    Article  CAS  PubMed  Google Scholar 

  38. Vederas JC, Floss HG (1980) Stereochemistry of pyridoxal phosphate catalyzed enzyme reactions. Acc Chem Res 13:455–463, and references therein

    Article  CAS  Google Scholar 

  39. Walsh C, Pascal RA, Johnson M, Raines R, Dikshit D, Krantz A, Honna M (1981) Mechanistic studies on the pyridoxal phosphate enzyme 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas sp. Biochemistry 20:7509–7519

    Article  CAS  PubMed  Google Scholar 

  40. Koh LL, Ranford JO, Robinson WT, Svensson JO, Tan ALC, Wu D (1996) Model for the reduced schiff base intermediate between amino acids and pyridoxal: copper(II) complexes of N-(2-hydroxybenzyl)amino acids with nonpolar side chains and the crystal structures of [Cu(N-(2-hydroxybenzyl)-D,L-alanine)(phen)].H2O and [Cu(N-(2-hydroxybenzyl)-D,L-alanine)(imidazole)]. Inorg Chem 35:6466–6472

    Article  CAS  PubMed  Google Scholar 

  41. Metzler DE, Longenecker JB, Snell EE (1953) Reversible catalytic cleavage of hydroxyamino acids by pyridoxal and metal salts. J Am Chem Soc 75:2786–2787

    Article  CAS  Google Scholar 

  42. Metzler DE, Olivard J, Snell EE (1954) Transamination of pyridoxamine and amino acids with glyoxylic acid. J Am Chem Soc 76:644–648

    Article  CAS  Google Scholar 

  43. Metzler DE, Snell EE (1952) Some transamination reactions involving vitamin B6. J Am Chem Soc 74:979–983

    Article  CAS  Google Scholar 

  44. Longenecker JB, Snell EE (1957) The comparative activities of metal ions in promoting pyridoxal-catalyzed reactions of amino acids. J Am Chem Soc 79:142–145

    Article  CAS  Google Scholar 

  45. Matsushima Y, Martell AE (1967) Pyridoxal analogs. IX. Electron absorption spectra and molecular species in methanol solution. J Am Chem Soc 89:1322–1330

    Article  CAS  PubMed  Google Scholar 

  46. Abbott EH, Martell AE (1969) Nuclear magnetic resonance investigation of the metal ion and proton-catalyzed reaction of some vitamin B6 Schiff bases. J Am Chem Soc 91:6931–6939

    Article  CAS  Google Scholar 

  47. Wagner MR, Walker FA (1983) Spectroscopic study of 1:1 copper(II) complexes with Schiff base ligands derived from salicylaldehyde and L-histidine and its analogs. Inorg Chem 22:3021–3028

    Article  CAS  Google Scholar 

  48. Snell EE, Braunstein AE, Severin ES, Torchinsky YM (1968) Eds. Pyridoxal Catalysis: Enzymes and Model Systems; Interscience: NewYork

  49. Holm RH (1973) In: Eichhorn GL (ed) Inorganic biochemistry. Elsevier, New York

    Google Scholar 

  50. Martell AE (1973) In: Sigel H (ed) Metal ions in biological systems, vol 2. Dekker, New York

    Google Scholar 

  51. Naskar S, Naskar S, Butcher RJ, Chattopadhyay SK (2010) Synthesis, X-ray crystal structures and spectroscopic properties of two Ni (II) complexes of pyridoxal Schiff’s bases with diamines: Importance of steric factor in stabilization of water helices in the lattices of metal complex. Inorg Chim Acta 363:404–411

    Article  CAS  Google Scholar 

  52. Naskar S, Naskar S, Figgie HM, Sheldrick WS, Chattopadhyay SK (2010) Synthesis, crystal structures and spectroscopic properties of two Zn(II) Schiff’s base complexes of pyridoxal. Polyhedron 29:493–499

    Article  CAS  Google Scholar 

  53. Abbott EH, Martell AE (1970) Mechanism of formation, structure, stereochemistry, and racemization of bis[pyridoxylidene(amino acidato)]aluminum(III) complexes. J Am Chem Soc 92:5845–5851

    Article  CAS  Google Scholar 

  54. Martell AE, Eidson AF (1975) Absorption and circular dichroism spectra of the pyridoxylidenalanatoaluminum (III) complex. Bioinorg Chem 4:277–289

    Article  CAS  Google Scholar 

  55. Capasso S, Giordano F, Mattia C, Mazzarella L, Ripamonti A (1974) Stereochemistry of model compounds for pyridoxal-catalysed reactions. Crystal structures of the hydrated complexes bis(pyridoxylidene-DL-valinato)nickel(II) and bis(pyridoxylidene-L-valinato)zinc(II). J Chem Soc Dalton Trans 2228–2233

  56. Pessoa CJ, Cavaco I, Correia I, Duarte MT, Gillard RD, Henriques RT, Higes FJ, Madeira C, Tomaz I (1999) Preparation and characterisation of new oxovanadium(IV) Schiff base complexes derived from amino acids and aromatic o-hydroxyaldehydes. Inorg Chim Acta 293:1–11

    Article  CAS  Google Scholar 

  57. Shanbhag VM, Martell AE (1990) Schiff bases of pyridoxal 5′-phosphate and 5′-deoxypyridoxal with phenylglycine derivatives and their metal complexes. Inorg Chem 29:1023–1031

    Article  CAS  Google Scholar 

  58. Correia I, Pessoa CJ, Duarte MT, Henriques RT, Piedade MFM, Veiros LF, Jakusch T, Kiss T, Dörnyei Á, Castro MMCA, Geraldes CFGC, Avecilla F (2004) N, N’-Ethylenebis(pyridoxylideneiminato) and N, N’-Ethylenebis(pyridoxylaminato): Synthesis, Characterization, Potentiometric, Spectroscopic, and DFT Studies of Their Vanadium(IV) and Vanadium(V) Complexes. Chem Eur J 10:2301–2317

    Article  CAS  PubMed  Google Scholar 

  59. Correia I, Dörnyei Á, Avecilla F, Kiss T, Pessoa CJ (2006) X-ray crystal structure and characterization in aqueous solution of {N, N-ethylenebis(pyridoxylaminato)}zinc(II). Eur J Inorg Chem 3:656–662

  60. Sundaravel K, Suresh E, Palaniandavar M (2009) Synthesis, structures, spectral and electrochemical properties of copper(II) complexes of sterically hindered Schiff base ligands. Inorg Chim Acta 362:199–207

    Article  CAS  Google Scholar 

  61. Adao P, Maurya MR, Kumar U, Avecilla F, Henriques RT, Kusnetsov ML, Pessoa CJ, Correia I (2009) Vanadium-salen and -salan complexes: characterization and application in oxygen transfer reactions. Pure Appl Chem 81:1279–1296

    Article  CAS  Google Scholar 

  62. Mukherjee T, Pessoa JC, Kumar A, Sarkar AR (2011) Oxidovanadium(IV) schiff base complex derived from vitamin B6: synthesis, characterization, and insulin enhancing properties. Inorg Chem 50:4349–4361

    Article  CAS  PubMed  Google Scholar 

  63. Mauryaa MR, Bishta M, Avecilla F (2011) Synthesis, characterization and catalytic activities of vanadium complexes containing ONN donor ligand derived from 2-aminoethylpyridine. J Mol Catal A Chem 344:18–27

    Article  Google Scholar 

  64. Mandal S, Modak R, Goswami S (2013) Synthesis and characterization of a copper(II) complex of a ONN donor schiff base ligand derived from pyridoxal and 2-(pyrid-2-yl)ethylamine – a novel pyridoxal based fluorescent probe. J Mol Struct 1037:352–360

    Article  CAS  Google Scholar 

  65. Mossman T (1983) Rapid colorimetric assay for cellular growth and survival. J Immunol Methods 65:55–63

    Article  Google Scholar 

  66. Mandal S, Naskar B, Modak R, Sikdar Y, Chatterjee S, Biswas S, Mondal Kumar T, Modak D, Goswami S (2015) Syntheses, crystal structures, spectral study and DFT calculation of three new copper(II) complexes derived from pyridoxal hydrochloride, N, N-dimethylethylenediamine and N, N- diethylethylenediamine. J Mol Struct 1088:38–49

    Article  CAS  Google Scholar 

  67. Swamy KMK, Kim HN, Soh JH, Kim Y, Kim SJ, Yoon J (2009) Manipulation of fluorescent and colorimetric changes of fluorescein derivatives and applications for sensing silver ions. Chem Commun 1234–1236

  68. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  69. Hou F, Cheng J, Xi P, Chen F, Huang L, Xie G, Shi Y, Liu H, Bai D, Zeng Z (2012) Recognition of copper and hydrogen sulfide in vitro using a fluorescein derivative indicator. Dalton Trans 41:5799–5804

    Article  CAS  PubMed  Google Scholar 

  70. Liu Z-C, Yang Z, Li T, Wang B, Li Y, Qin D, Wang M, Yan M (2011) An effective Cu(II) quenching fluorescence sensor in aqueous solution and 1D chain coordination polymer framework. Dalton Trans 40:9370–9373

    Article  CAS  PubMed  Google Scholar 

  71. Wu SP, Huang ZM, Liu SR, Chung PK (2012) A pyrene-based highly selective turn-on fluorescent sensor for copper(II) ion and its application in live cell imaging. J Fluoresc 22:253–259

    Article  CAS  PubMed  Google Scholar 

  72. Kavallieratos K, Rosenberg JM, Che W–Z, Ren T (2005) Fluorescent sensing and selective Pb(II) extraction by a dansylamide ion-exchanger. J Am Chem Soc 127:6514–6515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from the University Grants Commission for senior research fellowship to S. Mandal [Sanction No. UGC/847/Jr. Fellow (Upgradation)] is gratefully acknowledged. SKM is grateful to DST-PURSE PROGRAMME for partial financial support of the biological work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanchita Goswami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Mandal, S.K., Khuda-Bukhsh, A.R. et al. Pyridoxal Based Fluorescent Chemosensor for Detection of Copper(II) in Solution With Moderate Selectivity and Live Cell Imaging. J Fluoresc 25, 1437–1447 (2015). https://doi.org/10.1007/s10895-015-1634-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1634-x

Keywords

Navigation