Skip to main content
Log in

Novel Fluorescent Phenazines : Synthesis, Characterization, Photophysical Properties and DFT Calculations

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The organic compounds with donor-π-bridge-acceptor type of architecture are of great interest for application as semiconductors. The synthesized compounds are obtained from 4-morpholino naphthalene-1,2-dione and 4-(4-(diethylamino) phenyl)naphthalene-1,2-dione and mono substituted ortho-phenylene diamines by condensation reaction. The donor groups are morpholinyl and N,N-diethylamino phenyl moieties, whereas acceptors are substituted phenazines. The synthesized molecules were characterized by spectral analysis.. The effect of the substitution has been studied on the basis of photophysical properties of the molecules. The halochromism behaviour of the molecule shows that at low to moderate acidity they respond differently with two types of donors. DFT computations were used in conjunction with NMR analysis to determine the ratio of the positional isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li C-H, Kettle J, Horie M (2014) Cyclopentadithiophene–naphthalenediimide polymers; synthesis, characterisation, and n-type semiconducting properties in field-effect transistors and photovoltaic devices. Mater Chem Phys 144:519–528. doi:10.1016/j.matchemphys.2014.01.029

    Article  CAS  Google Scholar 

  2. Zang X-F, Zhang T-L, Huang Z-S et al (2014) Impact of the position isomer of the linkage in the double D–A branch-based organic dyes on the photovoltaic performance. Dyes Pigments 104:89–96. doi:10.1016/j.dyepig.2013.12.028

    Article  CAS  Google Scholar 

  3. Xu B, Wu X, Li H et al (2011) Selective detection of TNT and picric acid by conjugated polymer film sensors with donor—acceptor architecture. Macromolecules 44:5089–5092. doi:10.1021/ma201003f

    Article  CAS  Google Scholar 

  4. Wang H, Lin J, Huang W, Wei W (2010) Fluorescence “turn-on” metal ion sensors based on switching of intramolecular charge transfer of donor—acceptor systems. Sensors Actuators B Chem 150:798–805. doi:10.1016/j.snb.2010.07.025

    Article  CAS  Google Scholar 

  5. Liu X, Shu X, Zhou X et al (2010) Ultra-sensitive fluorescent sensor for Hg2+ based on a donor-acceptor-donor framework. J Phys Chem A 114:13370–13375. doi:10.1021/jp109304q

    Article  CAS  PubMed  Google Scholar 

  6. Basurto S, Riant O, Moreno D et al (2007) Colorimetric detection of Cu[II] cation and acetate, benzoate, and cyanide anions by cooperative receptor binding in new alpha, alpha’-bis-substituted donor-acceptor ferrocene sensors. J Org Chem 72:4673–4688. doi:10.1021/jo0702589

    Article  CAS  PubMed  Google Scholar 

  7. Chang YJ, Chow TJ (2011) Highly efficient red fluorescent dyes for organic light-emitting diodes. J Mater Chem 21:3091–3099. doi:10.1039/c0jm03109g

    Article  CAS  Google Scholar 

  8. Chen C-T (2004) Evolution of red organic light-emitting diodes: materials and devices. Chem Mater 16:4389–4400. doi:10.1021/cm049679m

    Article  CAS  Google Scholar 

  9. Kim S-J, Zhang Y, Zuniga C et al (2011) Efficient green OLED devices with an emissive layer comprised of phosphor-doped carbazole/bis-oxadiazole side-chain polymer blends. Org Electron 12:492–496

    Article  CAS  Google Scholar 

  10. Ni YR, Su HQ, Huang W et al (2013) A spiro [fluorene-9, 9′-xanthene]-based host material for efficient green and blue phosphorescent OLED. Appl Mech Mater 331:503–507

    Article  CAS  Google Scholar 

  11. Sun Q, Li D, Dong G et al (2013) Improved organic optocouplers based on a deep blue fluorescent OLED and an optimized bilayer heterojunction photosensor. Sensors Actuators B Chem 188:879–885

    Article  CAS  Google Scholar 

  12. Kessler F, Watanabe Y, Sasabe H et al (2013) High-performance pure blue phosphorescent OLED using a novel bis-heteroleptic iridium(iii) complex with fluorinated bipyridyl ligands. J Mater Chem C 1:1070. doi:10.1039/c2tc00836j

    Article  CAS  Google Scholar 

  13. Wang L, Shi Y, Zhao Y et al (2014) “Push–pull” 1,8-naphthalic anhydride with multiple triphenylamine groups as electron donor. J Mol Struct 1056–1057:339–346. doi:10.1016/j.molstruc.2013.10.004

    Article  Google Scholar 

  14. Sudyoadsuk T, Pansay S, Morada S et al (2013) Synthesis and characterization of D-D-π-A-type organic dyes bearing carbazole-carbazole as a donor moiety (D-D) for efficient dye-sensitized solar cells. Eur J Org Chem 2013:5051–5063. doi:10.1002/ejoc.201300373

    Article  CAS  Google Scholar 

  15. Hua Y, Chang S, Wang H et al (2013) New phenothiazine-based dyes for efficient dye-sensitized solar cells: positioning effect of a donor group on the cell performance. J Power Sources 243:253–259. doi:10.1016/j.jpowsour.2013.05.157

    Article  CAS  Google Scholar 

  16. Jamorski CJ, Casida ME (2004) Time-dependent density-functional theory investigation of the fluorescence behavior as a function of alkyl chain size for the 4-( N, N -dimethylamino)benzonitrile-like donor−acceptor systems 4-( N, N -diethylamino)benzonitrile and 4-( N, N -diisopropyl). J Phys Chem B 108:7132–7141. doi:10.1021/jp0307699

    Article  CAS  Google Scholar 

  17. Chang DM, Kwon DY, Kim YS (2013) Heteroleptic dual acceptor organic dyes with rhodanine-3-acetic acid and cyanoacrylic acid. Mol Cryst Liq Cryst 585:100–106. doi:10.1080/15421406.2013.850933

    Article  CAS  Google Scholar 

  18. Zhu L, Yang H, Zhong C, Li CM (2012) Modified triphenylamine-dicyanovinyl-based donor-acceptor dyes with enhanced power conversion efficiency of p-type dye-sensitized solar cells. Chem Asian J 7:2791–2795. doi:10.1002/asia.201200402

    Article  CAS  PubMed  Google Scholar 

  19. Agneeswari R, Tamilavan V, Song M et al (2013) Synthesis of polymers containing 1,2,4-oxadiazole as an electron-acceptor moiety in their main chain and their solar cell applications. J Polym Sci Part A Polym Chem 51:2131–2141. doi:10.1002/pola.26605

    Article  CAS  Google Scholar 

  20. Lee W, Seng JY, Hong J-I (2013) Metal-free organic dyes with benzothiadiazole as an internal acceptor for dye-sensitized solar cells. Tetrahedron 69:9175–9182. doi:10.1016/j.tet.2013.08.075

    Article  CAS  Google Scholar 

  21. Xu Z, Wang M, Zhao J et al (2014) Donor–acceptor type neutral green polymers containing 2,3-di(5-methylfuran-2-yl) quinoxaline acceptor and different thiophene donors. Electrochim Acta 125:241–249. doi:10.1016/j.electacta.2013.12.097

    Article  CAS  Google Scholar 

  22. Becerril HA, Miyaki N, Tang ML et al (2009) Transistor and solar cell performance of donor–acceptor low bandgap copolymers bearing an acenaphtho[1,2-b]thieno[3,4-e]pyrazine (ACTP) motif. J Mater Chem 19:591. doi:10.1039/b819210c

    Article  CAS  Google Scholar 

  23. Li Y, Meng B, Tong H et al (2014) A chlorinated phenazine-based donor–acceptor copolymer with enhanced photovoltaic performance. Polym Chem 5:1848. doi:10.1039/c3py01436c

    Article  CAS  Google Scholar 

  24. Rurack K, Bricks JL, Reck G et al (2000) Chalcone-analogue dyes emitting in the near-infrared (NIR): influence of donor-acceptor substitution and cation complexation on their spectroscopic properties and X-ray structure. J Phys Chem A 104:3087–3109

    Article  CAS  Google Scholar 

  25. Magde D, Wong R, Seybold PG (2002) Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem Photobiol 75:327. doi:10.1562/0031-8655(2002)075<0327:FQYATR>2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  26. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138. doi:10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  27. Becke AD (1993) Density-functional thermochemistry.III. The role of exact exchange. J Chem Phys 98:5648. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  29. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093. doi:10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  30. Ditchfield R (1971) Self-consistent molecular-orbital methods. IX. an extended gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724. doi:10.1063/1.1674902

    Article  CAS  Google Scholar 

  31. Krishnan R, Schlegel HB, Pople JA (1980) Derivative studies in configuration–interaction theory. J Chem Phys 72:4654. doi:10.1063/1.439708

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision C.01. Gaussian 09, revis. B.01. Gaussian, Inc, Wallingford

    Google Scholar 

  33. Martin EL, Fieser LF (1941) 1,2-naphthoquinone-4-sulfonate, ammonium and potassium. Org Synth 21:91. doi:10.15227/orgsyn.021.0091

    Article  CAS  Google Scholar 

  34. Van Gernert B, Knowles DB (1996) Photochromic Naphthopyran Compounds :1–10

  35. Rickwood M, Marsden SD, Askew VE (1995) Photochromic Spiroxazine Compounds :1–8

  36. Lakowicz JR (2007) Principles of fluorescence spectroscopy. Springer Science & Business Media, New York

    Google Scholar 

  37. Rtishchev NI, Samoilov DV, Martynova VP, El’tsov AV (2001) Luminescence properties of nitro derivatives of fluorescein. Russ J Gen Chem 71:1467–1478. doi:10.1023/A:1013974507390

    Article  CAS  Google Scholar 

  38. Samori S, Tojo S, Fujitsuka M et al (2007) Donor-acceptor-substituted tetrakis(phenylethynyl)benzenes as emissive molecules during pulse radiolysis in benzene. J Org Chem 72:2785–2793. doi:10.1021/jo062326h

    Article  CAS  PubMed  Google Scholar 

  39. Beinhoff M, Weigel W, Jurczok M et al (2001) Synthesis and spectroscopic properties of arene-substituted pyrene derivatives as model compounds for fluorescent polarity probes. Eur J Org Chem 2001:3819–3829. doi:10.1002/1099-0690(200110)2001:20<3819::AID-EJOC3819>3.0.CO;2-W

    Article  Google Scholar 

  40. Lippert E (1957) Spektroskopische Bestimmung des Dipolmomentes aromatischer Verbindungen im ersten angeregten Singulettzustand. Z Elektrochem Ber Bunsenges Phys Chem 61:962–975. doi:10.1002/bbpc.19570610819

    CAS  Google Scholar 

  41. Valeur B (2001) Mol Fluorescence. doi:10.1002/3527600248

    Article  Google Scholar 

  42. Singh P, Baheti A, Thomas KRJ (2011) Synthesis and optical properties of acidochromic amine-substituted benzo[a]phenazines. J Org Chem 76:6134–6145

    Article  CAS  PubMed  Google Scholar 

  43. Achelle S, Barsella A, Baudequin C et al (2012) Synthesis and photophysical investigation of a series of push–pull arylvinyldiazine chromophores. J Org Chem 77:4087–4096. doi:10.1021/jo3004919

    Article  CAS  PubMed  Google Scholar 

  44. Achelle S, Rodríguez-López J, Robin-le Guen F (2014) Synthesis and photophysical studies of a series of quinazoline chromophores. J Org Chem 79:7564–7571. doi:10.1021/jo501305h

    Article  CAS  PubMed  Google Scholar 

  45. Shailajha S, Rajesh Kannan U, Sheik Abdul Kadhar SP, Isac Paulraj E (2014) Molecular structure, vibrational spectra and (13)C and (1)H NMR spectral analysis of 1-methylnaphthalene by ab initio HF and DFT methods. Spectrochim Acta A Mol Biomol Spectrosc 133:720–729. doi:10.1016/j.saa.2014.06.006

    Article  CAS  PubMed  Google Scholar 

  46. Gupta R, Chaudhary RP (2014) Studies on orientation of cyclization in thiazolo-quinazoline heterocyclic system through NMR, DFT, and X-ray diffraction. J Heterocycl Chem. doi:10.1002/jhet.2098

    Google Scholar 

  47. Alkorta I, Elguero J (1998) Ab initio hybrid DFT–GIAO calculations of the shielding produced by carbon–carbon bonds and aromatic rings in 1H NMR spectroscopy. New J Chem 22:381–385. doi:10.1039/a708743h

    Article  CAS  Google Scholar 

  48. Olah GA, Rasul G, Heiliger L, Prakash GKS (1996) Preparation, NMR spectroscopic, and ab initio /DFT/GIAO-MP2 studies of halomethyl cations 1. J Am Chem Soc 118:3580–3583. doi:10.1021/ja9538905

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Abhinav Tathe is thankful to University Grants Commission, New Delhi for JRF and SRF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaiyan Sekar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 818 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tathe, A.B., Sekar, N. Novel Fluorescent Phenazines : Synthesis, Characterization, Photophysical Properties and DFT Calculations. J Fluoresc 25, 1403–1415 (2015). https://doi.org/10.1007/s10895-015-1631-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1631-0

Keywords

Navigation