Skip to main content
Log in

Permethylated-β-Cyclodextrin Capped CdTe Quantum Dot and its Sensitive Fluorescence Analysis of Malachite Green

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the present work, the CdTe quantum dots were covalently conjugated with permethylated-β-cyclodextrin (OMe-β-CD) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride as cross-linking reagent. The obtained functional quantum dots (OMe-β-CD/QDs) showed highly luminescent, water solubility and photostability as well as good inclusion ability to malachite green. A sensitive fluorescence method was developed for the analysis of malachite green in different samples. The good linearity was 2.0 × 10−7–1.0 × 10−5 mol/L and the limit of detect was 1.7 × 10−8 mol/L. The recoveries for three environmental water samples were 92.0–108.2 % with relative standard deviation (RSD) of 0.24–1.87 %, while the recovery for the fish sample was 94.3 % with RSD of 1.04 %. The results showed that the present method was sensitive and convenient to determine malachite green in complex samples.

The analytical mechanism of OMe-β-CD/QDs and its linear response to MG

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reilly DJ (2013) Quantum dots: and then there were three. Nat Nanotechnol 8:395–396

    Article  CAS  PubMed  Google Scholar 

  2. Kershaw SV, Susha AS, Rogach AL (2013) Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. Chem Soc Rev 42:3033–3087

    Article  CAS  PubMed  Google Scholar 

  3. Kikkeri R, Padler-Karavani V, Diaz S, Verhagen A, Yu H, Cao HZ, Langereis MA, De Groot RJ, Chen X, Varki A (2013) Quantum dot nanometal surface energy transfer based biosensing of sialic acid compositions and linkages in biological samples. Anal Chem 85:3864–3870

    Article  CAS  PubMed  Google Scholar 

  4. Zhang XQ, Li D, Wang C, Zhi X, Zhang CL, Wang K, Cui DX (2012) A CCD-based reader combined quantum dots-labeled lateral flow strips for ultrasensitive quantitative detection of anti-HBs antibody. J Biomed Nanotechnol 8:372–379

    Article  CAS  PubMed  Google Scholar 

  5. Zhang LM, Xing YD, He NY, Zhang Y, Lu ZX, Zhang JP, Zhang ZJ (2012) Preparation of graphene quantum dots for bioimaging application. J Nanosci Nanotechnol 12:2924–2928

    Article  CAS  PubMed  Google Scholar 

  6. Choi YJ, Kim YJ, Lee JW, Lee YH, Lim YB, Chung HW (2012) Cyto-/genotoxic effect of CdSe/ZnS quantum dots in human lung adenocarcinoma cells for potential photodynamic UV therapy applications. J Nanosci Nanotechnol 12:2160–2168

    Article  CAS  PubMed  Google Scholar 

  7. Wahab R, Yang YB, Umar A, Singh S, Hwang IH, Shin HS, Kim YS (2012) Platinum quantum dots and their cytotoxic effect towards myoblast cancer cells (C2C12). J Biomed Nanotechnol 8:424–431

    Article  CAS  PubMed  Google Scholar 

  8. Bavireddi H, Kikkeri R (2012) Glyco-β-cyclodextrin capped quantum dots: synthesis, cytotoxicity and optical detection of carbohydrate–protein interactions. Analyst 137:5123–5127

    Article  CAS  PubMed  Google Scholar 

  9. Vallafiorita-Monteoleone F, Daita V, Quarti C, Perdicchia D, Buttero PD, Scavia G, del Zoppo M, Botta C (2014) Light harvesting of CdSe/CdS quantum dots coated with β-cyclodextrin based host–guest species through resonant energy transfer from the guests. RSC Adv 4:28886–28892

    Article  Google Scholar 

  10. Jia L, Xu JP, Li D, Pang SP, Fang Y, Song ZG, Ji J (2010) Fluorescence detection of alkaline phosphatase activity with β-cyclodextrin-modified quantum dots. Chem Commun 46:7166–7168

    Article  CAS  Google Scholar 

  11. Tang B, Cao LH, Xu KH, Zhuo LH, Ge JC, Li QF, Yu LJ (2008) A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles. Chem Eur J 14:3637–3644

    Article  CAS  PubMed  Google Scholar 

  12. Han CP, Li HB (2008) Chiral Recognition of amino acids based on cyclodextrin-capped quantum dots. Small 4:1344–1350

    Article  CAS  PubMed  Google Scholar 

  13. Algarra M, Campos BB, Aguiar FR, Rodriguez-Borges JE, Esteves da Silva JCG (2012) Novel β-cyclodextrin modified CdTe quantum dots as fluorescence nanosensor for acetylsalicylic acid and metabolites. Mater Sci Eng 32:799–803

    Article  CAS  Google Scholar 

  14. Cao YJ, Wu SS, Liang YZ, Yu Y (2013) The molecular recognition of β-cyclodextrin modified CdSe quantum dots with tyrosine enantiomers: theoretical calculation and experimental study. J Mol Struct 1031:9–13

    Article  CAS  Google Scholar 

  15. Saha P, Chowdhury S, Gupta S, Kumar I, Kumar R (2010) Assessment on the removal of malachite green using tamarind fruit shell as biosorbent. Clean Soil Air Water 38:437–445

    Article  CAS  Google Scholar 

  16. Chowdhury S, Mishra R, Saha P, Kushwaha P (2011) Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 265:159–168

    Article  CAS  Google Scholar 

  17. Guo ZY, Gai PP, Hao TT, Duan J, Wang S (2011) Determination of malachite green residues in fish using a highly sensitive electrochemiluminescence method combined with molecularly imprinted solid phase extraction. J Agric Food Chem 59:5257–5262

    Article  CAS  PubMed  Google Scholar 

  18. Chen LY, Lu YB, Li SY, Lin XJ, Xu ZM, Dai ZY (2013) Application of graphene-based solid-phase extraction for ultra-fast determination of malachite green and its metabolite in fish tissues. Food Chem 141:1383–1389

    Article  CAS  PubMed  Google Scholar 

  19. Lopez-Gutierrez N, Romero-Gonzalez R, Plaza-Bolanos P, Martinez-Vidal JL, Garrido-Frenich A (2013) Simultaneous and fast determination of malachite green, leucomalachite green, crystal violet, and brilliant green in seafood by ultrahigh performance liquid chromatography–tandem mass spectrometry. Food Anal Methods 6:406–414

    Article  Google Scholar 

  20. Zhang YY, Lai KQ, Zhou JL, Wang XC, Rasco BA, Huang YQ (2012) A novel approach to determine leucomalachite green and malachite green in fish fillets with surface-enhanced Raman spectroscopy (SERS) and multivariate analyses. J Raman Spectrosc 43:1208–1213

    CAS  Google Scholar 

  21. Li L, Qian HF, Fang NH, Ren JC (2006) Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions. J Lumin 116:59–66

    Article  CAS  Google Scholar 

  22. Kang S, Chen Y, Shi J, Ma YH, Liu Y (2007) Synthesis of oligo(ethylenediamino) modified permethylated-β-cyclo-dextrins and their interactions with bovine serum albumin. Chem J Chin Univ 28:458–465

    CAS  Google Scholar 

  23. Wang SP, Mamedova N, Kotov NA, Chen W, Studer J (2002) Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett 2:817–822

    Article  CAS  Google Scholar 

  24. Zhao MP, Li JM, Du LY, Tan CP, Xia Q, Mao ZW, Ji LN (2011) Targeted cellular uptake and siRNA silencing by quantum-dot nanoparticles coated with β-cyclodextrin coupled to amino acids. Eur Chem J 17:5171–5179

    Article  CAS  Google Scholar 

  25. Spanhel L, Haase M, Weller H, Henglein A (1987) Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CDS particles. J Am Chem Soc 109:5649–5655

    Article  CAS  Google Scholar 

  26. Garcia-Rio L, Leis JR, Mejuto JC, Navarro-Vazquez A, Perez-Juste J, Rodriguez-Dafonte P (2004) Basic hydrolysis of crystal violet in β-cyclodextrin surfactant mixed systems. Langmuir 20:606–613

    Article  CAS  PubMed  Google Scholar 

  27. Bernad-Bernad MJ, Gracia-Mora J, Diaz D, Mendoza Diaz G (1999) Molecular interactions and thermodynamic aspects of the complexation reaction between gentian violet and several cyclodextrin. J Incl Phenom Macrocycl Chem 34:1–18

    Article  Google Scholar 

  28. Gan XJ, Liu SP, Liu ZF, Hu XL (2012) Determination of tetracaine hydrochloride by fluorescence quenching method with some aromatic amino acids as probes. J Fluoresc 22:129–135

    Article  CAS  PubMed  Google Scholar 

  29. Sykora M, Petruska MA, Acevedo JA, Bezel I, Meyer TJ, Klimov VI (2006) Photoinduced charge transfer between CdSe nanocrystal quantum dots and Ru-polypyridine complexes. J Am Chem Soc 128:9984–9985

    Article  CAS  PubMed  Google Scholar 

  30. Song LX, Bai L, Xu XM, He J, Pan SZ (2009) Inclusion complexation, encapsulation interaction and inclusion number in cyclodextrin chemistry. Coord Chem Rev 253:1276–1284

    Article  CAS  Google Scholar 

  31. Ma Q, Cui HL, Su XG (2009) Highly sensitive gaseous formaldehyde sensor with CdTe quantum dots multilayer films. Biosen Bioelectron 25:839–844

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Xiao-hua Xiao from Sun Yat-sen University for his helpful advice. This work was supported by the National Natural Science Foundation of China (No.21275056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujuan Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Wei, J., Wu, W. et al. Permethylated-β-Cyclodextrin Capped CdTe Quantum Dot and its Sensitive Fluorescence Analysis of Malachite Green. J Fluoresc 25, 1397–1402 (2015). https://doi.org/10.1007/s10895-015-1630-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1630-1

Keyword

Navigation