Skip to main content
Log in

Characterization of the Dynamics of Photoluminescence Degradation in Aqueous CdTe/CdS Core-Shell Quantum Dots

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We investigate the effects of the excitation power on the photoluminescence spectra of aqueous CdTe/CdS core-shell quantum dots. We have focused our efforts on nanoparticles that are drop-cast on a silicon nitride substrate and dried out. Under such conditions, the emission intensity of these nanocrystals decreases exponentially and the emission center wavelength shifts with the time under laser excitation, displaying a behavior that depends on the excitation power. In the low-power regime a blueshift occurs, which we attribute to photo-oxidation of the quantum dot core. The blueshift can be suppressed by performing the measurements in a nitrogen atmosphere. Under high-power excitation the nanoparticles thermally expand and aggregate, and a transition to a redshift regime is then observed in the photoluminescence spectra. No spectral changes are observed for nanocrystals dispersed in the solvent. Our results show a procedure that can be used to determine the optimal conditions for the use of a given set of colloidal quantum dots as light emitters for photonic crystal optical cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018

    Article  CAS  PubMed  Google Scholar 

  2. Qualtieri A, Pisanello F, Grande M, Stomeo T, Martiradonna L, Epifani G, Fiore A, Passaseo A, De Vittorio M (2010) Emission control of colloidal nanocrystals embedded in Si 3 N 4 photonic crystal H1 nanocavities. Microelectron Eng 87(5):1435–1438

    Article  CAS  Google Scholar 

  3. Schreder B, Schmidt T, Ptatschek V, Winkler U, Materny A, Umbach E, Lerch M, Müller G, Kiefer W, Spanhel L (2000) CdTe/CdS clusters with “core-shell” structure in colloids and films: the path of formation and thermal breakup. J Phys Chem B 104(8):1677–1685

    Article  CAS  Google Scholar 

  4. Borchert H, Talapin DV, Gaponik N, McGinley C, Adam S, Lobo A, Möller T, Weller H (2003) Relations between the photoluminescence efficiency of CdTe nanocrystals and their surface properties revealed by synchrotron XPS. J Phys Chem B 107(36):9662–9668

    Article  CAS  Google Scholar 

  5. Peng H, Zhang L, Soeller C, Travas-Sejdic J (2007) Preparation of water-soluble CdTe/CdS core/shell quantum dots with enhanced photostability. J Lumin 127(2):721–726

    Article  CAS  Google Scholar 

  6. Zeng Q, Kong X, Sun Y, Zhang Y, Tu L, Zhao J, Zhang H (2008) Synthesis and optical properties of type II CdTe/CdS core/shell quantum dots in aqueous solution via successive ion layer adsorption and reaction. J Phys Chem C 112(23):8587–8593

    Article  CAS  Google Scholar 

  7. Yan Y, Wang L, Vaughn CB, Chen G, Van Patten PG (2011) Spectroscopic investigation of oxygen sensitivity in CdTe and CdTe/CdS nanocrystals. J Phys Chem C 115(50):24521–24527

    Article  CAS  Google Scholar 

  8. Baslak C, Kus M, Cengeloglu Y, Ersoz M (2014) A comparative study on fluorescence quenching of CdTe nanocrystals with a serial of polycyclic aromatic hydrocarbons. J Lumin 153:177–181

    Article  CAS  Google Scholar 

  9. Farkhani SM, Valizadeh A (2014) Review: three synthesis methods of CdX (X= Se, S or Te) quantum dots. IET Nanobiotechnol 8(2):59–76

    Article  CAS  Google Scholar 

  10. Zhu Y, Li Z, Chen M, Cooper HM, Lu GQM, Xu ZP (2013) One-pot preparation of highly fluorescent cadmium telluride/cadmium sulfide quantum dots under neutral-pH condition for biological applications. J Colloid Interface Sci 390(1):3–10

    Article  CAS  PubMed  Google Scholar 

  11. Liu YF, Xie B, Yin ZG, Fang SM, Zhao JB (2010) Synthesis of highly stable CdTe/CdS quantum dots with biocompatibility. Eur J Inorg Chem 2010(10):1501–1506

    Article  Google Scholar 

  12. Poderys V, Matulionyte M, Selskis A, Rotomskis R (2011) Interaction of water-soluble CdTe quantum dots with bovine serum albumin. Nanoscale Res Lett 6(1):9–14

    PubMed Central  Google Scholar 

  13. Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) “ Dip-pen” nanolithography. Science 283(5402):661–663

    Article  CAS  PubMed  Google Scholar 

  14. Gokarna A, Lee S-K, Hwang J-S, Cho Y-H, Lim YT, Chung BH, Lee M (2008) Fabrication of CdSe/ZnS quantum-dot-conjugated protein microarrays and nanoarrays

  15. Roy D, Munz M, Colombi P, Bhattacharyya S, Salvetat J-P, Cumpson P, Saboungi M-L (2007) Directly writing with nanoparticles at the nanoscale using dip-pen nanolithography. Appl Surf Sci 254(5):1394–1398

    Article  CAS  Google Scholar 

  16. Zhang (2006) Time-dependent photoluminescence blue shift of the quantum dots in living cells: effect of oxidation by singlet oxygen. J Am Chem Soc 128:13369–13401

    Google Scholar 

  17. Liu Y-S, Sun Y, Vernier PT, Liang C-H, Chong SYC, Gundersen MA (2007) pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells. J Phys Chem C 111(7):2872–2878

    Article  CAS  Google Scholar 

  18. Saad A, Bakr M, Azzouz I, Kana MTA (2011) Effect of temperature and pumping power on the photoluminescence properties of type-II CdTe/CdSe core-shell QDs. Appl Surf Sci 257(20):8634–8639

    Article  CAS  Google Scholar 

  19. Cui X, Guo H, Hou C, Gao F, Wei W, Peng B (2014) Enhanced near infrared luminescence efficiency of ligand-free LaF 3: Nd/LaF 3 core/shell nanocrystals in solvent dispersion. J Lumin 154:155–159

    Article  CAS  Google Scholar 

  20. Kurbanov S, Kang T (2015) Effect of ultraviolet-illumination and sample ambient on photoluminescence from zinc oxide nanocrystals. J Lumin 158:99–102

    Article  CAS  Google Scholar 

  21. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653):827–829

    Article  CAS  Google Scholar 

  22. Rabani E, Reichman DR, Geissler PL, Brus LE (2003) Drying-mediated self-assembly of nanoparticles. Nature 426(6964):271–274

    Article  CAS  PubMed  Google Scholar 

  23. Biju V, Makita Y, Sonoda A, Yokoyama H, Baba Y, Ishikawa M (2005) Temperature-sensitive photoluminescence of CdSe quantum dot clusters. J Phys Chem B 109(29):13899–13905

    Article  CAS  PubMed  Google Scholar 

  24. Korala L, Wang Z, Liu Y, Maldonado S, Brock SL (2013) Uniform thin films of CdSe and CdSe (ZnS) core (Shell) quantum dots by sol–gel assembly: enabling photoelectrochemical characterization and electronic applications. ACS Nano 7(2):1215–1223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Visoly‐Fisher I, Dobson KD, Nair J, Bezalel E, Hodes G, Cahen D (2003) Factors affecting the stability of CdTe/CdS solar cells deduced from stress tests at elevated temperature. Adv Funct Mater 13(4):289–299

    Article  Google Scholar 

  26. Santos (2008) Semiconductor quantum dots for biological applications. Handbook of Self Assembled Semiconductor Nanostructures Novel Devices in Photonics and Electronic. Elsevier

  27. Andrade CG, Cabral Filho PE, Tenório DP, Santos BS, Beltrão EI, Fontes A, Carvalho LB Jr (2013) Evaluation of glycophenotype in breast cancer by quantum dot-lectin histochemistry. Int J Nanomedicine 8:4623

    PubMed Central  PubMed  Google Scholar 

  28. Ying E, Li D, Guo S, Dong S, Wang J (2008) Synthesis and bio-imaging application of highly luminescent mercaptosuccinic acid-coated CdTe nanocrystals. PLoS One 3(5):e2222

    Article  PubMed Central  PubMed  Google Scholar 

  29. Santos B, Farias P, Menezes F, Brasil A, Fontes A, Romao L, Amaral J, Moura-Neto V, Tenorio D, Cesar C (2008) New highly fluorescent biolabels based on II–VI semiconductor hybrid organic–inorganic nanostructures for bioimaging. Appl Surf Sci 255(3):790–792

    Article  CAS  Google Scholar 

  30. Poirier D, Weaver J (1993) CdS by XPS. Surf Sci Spectra 2(3):249–255

    Article  CAS  Google Scholar 

  31. Lee H, Issam A, Belmahi M, Assouar M, Rinnert H, Alnot M (2009) Synthesis and characterizations of bare CdS nanocrystals using chemical precipitation method for photoluminescence application. J Nanomaterials 2009:41

    Article  Google Scholar 

  32. Nanda J, Kuruvilla BA, Sarma D (1999) Photoelectron spectroscopic study of CdS nanocrystallites. Phys Rev B 59(11):7473

    Article  CAS  Google Scholar 

  33. Dai M-Q, Zheng W, Huang Z, Yung L-YL (2012) Aqueous phase synthesis of widely tunable photoluminescence emission CdTe/CdS core/shell quantum dots under a totally ambient atmosphere. J Mater Chem 22(32):16336–16345

    Article  CAS  Google Scholar 

  34. Dagtepe P, Chikan V, Jasinski J, Leppert VJ (2007) Quantized growth of CdTe quantum dots; observation of magic-sized CdTe quantum dots. J Phys Chem C 111(41):14977–14983

    Article  CAS  Google Scholar 

  35. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15(14):2854–2860

    Article  CAS  Google Scholar 

  36. Kraus RM, Lagoudakis PG, Müller J, Rogach AL, Lupton JM, Feldmann J, Talapin DV, Weller H (2005) Interplay between auger and ionization processes in nanocrystal quantum dots. J Phys Chem B 109(39):18214–18217

    Article  CAS  PubMed  Google Scholar 

  37. Emin S, Loukanov A, Wakasa M, Nakabayashi S, Kaneko Y (2010) Photostability of water-dispersible CdTe quantum dots: capping ligands and oxygen. Chem Lett 39(6):654–656

    Article  CAS  Google Scholar 

  38. Ma J, Chen J-Y, Guo J, Wang C, Yang W, Xu L, Wang P (2006) Photostability of thiol-capped CdTe quantum dots in living cells: the effect of photo-oxidation. Nanotechnology 17(9):2083

    Article  CAS  Google Scholar 

  39. Yan Y, Chen G, Van Patten PG (2011) Ultrafast exciton dynamics in CdTe nanocrystals and core/shell CdTe/CdS nanocrystals. J Phys Chem C 115(46):22717–22728

    Article  CAS  Google Scholar 

  40. Kim (2003) Contribution of the Loss of Nanocrystal Ligands to Interdot Coupling in Films of Small CdSe/1-Thioglycerol Nanocrystals. J Phys Chem B 107:6318–6323

    Article  CAS  Google Scholar 

  41. Fonthal G, Tirado-Mejıa L, Marın-Hurtado J, Ariza-Calderon H, Mendoza-Alvarez J (2000) Temperature dependence of the band gap energy of crystalline CdTe. J Phys Chem Solid 61(4):579–583

    Article  CAS  Google Scholar 

  42. Allahverdi Ç, Yükselici M (2008) Temperature dependence of absorption band edge of CdTe nanocrystals in glass. New J Phys 10(10):103029

    Article  Google Scholar 

  43. Boev V, Filonovich S, Vasilevskiy M, Silva C, Gomes M, Talapin D, Rogach A (2003) Dipole–dipole interaction effect on the optical response of quantum dot ensembles. Phys B Condens Matter 338(1):347–352

    Article  CAS  Google Scholar 

  44. van Sark WG, Frederix PL, Van den Heuvel DJ, Gerritsen HC, Bol AA, van Lingen JN, de Mello DC, Meijerink A (2001) Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy. J Phys Chem B 105(35):8281–8284

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Ciência e Tecnologia do Estado de Minas Gerais (FAPEMIG), Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE) and Instituto Nacional de Ciência e Tecnologia de Fotônica (INFo). We are grateful to Prof. Beate S. Santos and Prof. Adriana Fontes of research group in Biomedical Nanotechnology (NanoBio) at Universidade Federal de Pernambuco, Brazil, for the samples used in this work.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Pankiewicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankiewicz, C.G., de Assis, PL., Filho, P.E.C. et al. Characterization of the Dynamics of Photoluminescence Degradation in Aqueous CdTe/CdS Core-Shell Quantum Dots. J Fluoresc 25, 1389–1395 (2015). https://doi.org/10.1007/s10895-015-1629-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1629-7

Keywords

Navigation