Skip to main content
Log in

A New Turn on Fluorescent Probe for Selective Detection of Cysteine/Homocysteine

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new fluorescent probe (probe 1) was developed for recognition of cysteine (Cys) and homocysteine (Hcy). Probe 1 exhibited a large absorption peak blue-shift (107 nm) as well as enhanced fluorescence responses to Cys/Hcy based on cyclization of thiol containing amino acids with aldehydes, inhibiting the C = N isomerization-induced quenching process by an intramolecular hydrogen bond. The detection mechanism was proved by 1H NMR and mass spectrometry analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. Wood ZA, Schröder E, Harris JR, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40

    Article  CAS  PubMed  Google Scholar 

  2. Shahrokhian S (2001) Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal Chem 73:5972–5978

    Article  CAS  PubMed  Google Scholar 

  3. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PWF, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. New Engl J Med 346:476–483

    Article  CAS  PubMed  Google Scholar 

  4. Forman HJ, Zhang HQ, Rinna A (2009) Glutathione: overview of its protective roles, measurement and biosynthesis. Mol Aspects Med 30:1–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Dalton TP, Shertzer HG, Puga A (1999) Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol 39:67–101

    Article  CAS  PubMed  Google Scholar 

  6. Chen X, Pradhan T, Wang F, Kim JS, Yoon J (2012) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev 112:1910–1956

    Article  CAS  PubMed  Google Scholar 

  7. Jung HS, Chen X, Kim JS, Yoon J (2013) Recent progress in luminescent and colorimetric chemosensors for detection of thiols. Chem Soc Rev 42:6019–6031

    Article  CAS  PubMed  Google Scholar 

  8. Sun YQ, Chen M, Liu J, Lv X, Li JF, Guo W (2011) Nitroolefin-based coumarin as a colorimetric and fluorescent dual probe for biothiols. Chem Commun 47:11029–11031

    Article  CAS  Google Scholar 

  9. Kand D, Kalle AM, Varma SJ, Talukdar P (2012) A chromenoquinoline-based fluorescent off-on thiol probe for bioimaging. Chem Commun 48:2722–2724

    Article  CAS  Google Scholar 

  10. Kwon H, Lee K, Kim HJ (2011) Coumarin-malonitrile conjugate as a fluorescence turn-on probe for biothiols and its cellular expression. Chem Commun 47:1773–1775

    Article  CAS  Google Scholar 

  11. Jung HS, Ko KC, Kim GH, Lee AR, Na YC, Kang C, Lee JY, Kim JS (2011) Coumarin based thiol chemosensor: synthesis, turn-on mechanism, and its biological application. Org Lett 13:1498–1501

    Article  CAS  PubMed  Google Scholar 

  12. Kim GJ, Lee K, Kwon H, Kim HJ (2011) Ratiometric fluorescence imaging of cellular glutathione. Org Lett 13:2799–2801

    Article  CAS  PubMed  Google Scholar 

  13. Yang X, Guo Y, Strongin RM (2011) Conjugate addition/cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine. Angew Chem Int Edit 50:10690–10693

    Article  CAS  Google Scholar 

  14. Guo Z, Nam S, Park S, Yoon J (2012) A highly selective ratiometric near-infrared fluorescent cyanine sensor for cysteine with remarkable shift and its application in bioimaging. Chem Sci 3:2760–2765

    Article  CAS  Google Scholar 

  15. Wang L, Zhou Q, Zhu B, Yan L, Ma Z, Du B, Zhang X (2012) A colorimetric and fluorescent chemodosimeter for discriminative and simultaneous quantification of cysteine and homocysteine. Dyes Pigments 95:275–279

    Article  CAS  Google Scholar 

  16. Zuo QP, Li B, Pei Q, Li Z, Liu SK (2010) A highly selective fluorescent probe for detection of biological samples thiol and its application in living cells. J Fluoresc 20:1307–1313

    Article  CAS  PubMed  Google Scholar 

  17. Wang P, Liu J, Lv X, Liu Y, Zhao Y, Guo W (2012) A naphthalimide-based glyoxal hydrazone for selective fluorescence turn-on sensing of Cys and Hcy. Org Lett 14:520–523

    Article  CAS  PubMed  Google Scholar 

  18. Hu M, Fan J, Li H, Song K, Wang S, Cheng G, Peng X (2011) Fluorescent chemodosimeter for Cys/Hcy with a large absorption shift and imaging in living cells. Org Biomol Chem 9:980–983

    Article  CAS  PubMed  Google Scholar 

  19. Liu X, Xi N, Liu S, Ma Y, Yang H, Li H, He J, Zhao Q, Li F, Huang W (2012) Highly selective phosphorescent nanoprobes for sensing and bioimaging of homocysteine and cysteine. J Mater Chem 22:7894–7901

    Article  CAS  Google Scholar 

  20. Yuan L, Lin W, Yang Y (2011) A ratiometric fluorescent probe for specific detection of cysteine over homocysteine and glutathione based on the drastic distinction in the kinetic profiles. Chem Commun 47:6275–6277

    Article  CAS  Google Scholar 

  21. Lim S, Escobedo JO, Lowry M, Xu X, Strongin R (2010) Selective fluorescence detection of cysteine and N-terminal cysteine peptide residues. Chem Commun 46:5707–5709

    Article  CAS  Google Scholar 

  22. Lee MH, Han JH, Kwon PS, Bhuniya S, Kim JY, Sessler JL, Kang C, Kim JS (2012) Hepatocyte-targeting single galactose-appended naphthalimide: a tool for intracellular thiol imaging in vivo. J Am Chem Soc 134:13116–13122

    Google Scholar 

  23. Long L, Lin W, Chen B, Gao W, Yuan L (2011) Construction of FRET-based ratiometric fluorescent thiol probe. Chem Commun 47:893–895

    Article  CAS  Google Scholar 

  24. Ji S, Guo H, Yuan X, Li X, Ding H, Gao P, Zhao C, Wu W, Wu W, Zhao J (2010) A highly selective OFF–ON red-emitting phosphorescent thiol probe with large stokes shift and long luminescent lifetime. Org Lett 12:2876–2879

    Article  CAS  PubMed  Google Scholar 

  25. Lim CS, Masanta G, Kim HJ, Han JH, Kim HM, Cho BR (2011) Ratiometric detection of mitochondrial thiols with a two-photon fluorescent probe. J Am Chem Soc 133:11132–11135

    Article  CAS  PubMed  Google Scholar 

  26. Shiu HY, Wong MK, Che CM (2011) Turn-on FRET-based luminescent iridium(III) probes for the detection of cysteine and homocysteine. Chem Commun 47:4367–4369

    Article  CAS  Google Scholar 

  27. Shao J, Sun H, Guo H, Ji S, Zhao J, Wu W, Yuan X, Zhang C, James TD (2012) A highly selective red-emitting FRET fluorescent molecular probe derived from BODIPY for the detection of cysteine and homocysteine: an experimental and theoretical study. Chem Sci 3:1049–1061

    Article  CAS  Google Scholar 

  28. Chen Y, Zhao J, Guo H, Xie L (2012) Geometry relaxation-induced large Stokes shift in red-emitting borondipyrromethenes (BODIPY) and applications in fluorescent thiol probes. J Org Chem 77:2192–2206

    Article  CAS  PubMed  Google Scholar 

  29. Guo H, Jing Y, Yuan X, Ji S, Zhao J, Li X, Kan Y (2011) Highly selective fluorescent OFF–ON thiol probes based on dyads of BODIPY and potent intramolecular electron sink 2,4-dinitrobenzenesulfonyl subunits. Org Biomol Chem 9:3844–3853

    Article  CAS  PubMed  Google Scholar 

  30. Shao J, Guo H, Ji S, Zhao J (2011) Styryl-BODIPY based red-emitting fluorescent OFF–ON molecular probe for specific detection of cysteine. Biosens Bioelectron 26:3012–3017

    Article  CAS  PubMed  Google Scholar 

  31. Jung HS, Han JH, Habata Y, Kang C, Kim JS (2011) An iminocoumarin-Cu(II) ensemble-based chemodosimeter toward thiols. Chem Commun 47:5142–5144

    Article  CAS  Google Scholar 

  32. Luo C, Zhou Q, Zhang B, Wang X (2011) A new squaraine and Hg2+-based chemosensor with tunable measuring range for thiol-containing amino acids. New J Chem 35:45–48

    Article  CAS  Google Scholar 

  33. Zhou L, Lin Y, Huang Z, Ren J, Qu X (2012) Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem Commun 48:1147–1149

    Article  CAS  Google Scholar 

  34. Lavis LD, Raines RT (2008) Bright ideas for chemical biology. ACS Chem Biol 3:142–155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer Science + Business Media, LLC, New York

    Book  Google Scholar 

  36. Loura LMS, Fernandes F, Fernandes AC, Prates Ramalho JP (2008) Effects of fluorescent probe NBD-PC on the structure, dynamics and phase transition of DPPC. A molecular dynamics and differential scanning calorimetry study. BBA Biomembr 1778:491–501

    Article  CAS  Google Scholar 

  37. Rusin O, Luce NNS, Agbaria RA, Escobedo JO, Jiang S, Warner IM, Dawan FB, Lian K, Strongin RM (2004) Visual detection of cysteine and homocys teine. J Am Chem Soc 126:438–439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kim T, Lee D, Kim H (2008) Highly selective fluorescent sensor for homocysteine and cysteine. Tetrahedron Lett 49:4879–4881

    Article  CAS  Google Scholar 

  39. Key JA, Li C, Cairo CW (2012) Detection of cellular sialic acid content using nitrobenzoxadiazole carbonyl-reactive chromophores. Bioconjug Chem 23:363–371

    Article  CAS  PubMed  Google Scholar 

  40. Mello JV, Finney NS (2001) Dual-signaling fluorescent chemosensors based on conformational restriction and induced charge transfer. Angew Chem Int Ed 40:1536–1538

    Article  CAS  Google Scholar 

  41. Tremblay MS, Halim M, Sames D (2007) Cocktails of Tb3+ and Eu3+ Complexes: A general platform for the design of ratiometric optical probes. J Am Chem Soc 129:7570–7577

    Article  CAS  PubMed  Google Scholar 

  42. Xu Z, Singh NJ, Lim J, Pan J, Kim HN, Park S, Kim KS, Yoon J (2009) Unique sandwich stacking of pyrene-adenine-pyrene for selective and ratiometric fluorescent sensing of ATP at physiological pH. J Am Chem Soc 131:15528–15533

    Article  CAS  PubMed  Google Scholar 

  43. Chandrasekhar V, Bag P, Pandey MD (2009) Phosphorus-supported multidentate coumarin-containing fluorescence sensors for Cu2+. Tetrahedron 65:9876–9883

    Article  CAS  Google Scholar 

  44. Jung HS, Ko KC, Lee JH, Kim SH, Bhuniya S, Lee JY, Kim Y, Kim SJ, Kim JS (2010) Rationally designed fluorescence turn-on sensors: A new design strategy based on orbital control. Inorg Chem 49:8552–8557

    Article  CAS  PubMed  Google Scholar 

  45. Suresh M, Mandal AK, Saha S, Suresh E, Mandoli A, Liddo RD, Parnigotto PP, Das A (2010) Azine-based receptor for recognition of Hg2+ ion: Crystallographic evidence and imaging application in live cells. Org Lett 12:5406–5409

    Article  CAS  PubMed  Google Scholar 

  46. Li Z, Yu M, Zhang L, Yu M, Liu J, Wei L, Zhang H (2010) A “switching on” fluorescent chemodosimeter of selectivity to Zn2+ and its application to MCF-7 cells. Chem Commun 46:7169–7171

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (21102037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puhui Xie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 490 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, P., Gao, G., Liu, J. et al. A New Turn on Fluorescent Probe for Selective Detection of Cysteine/Homocysteine. J Fluoresc 25, 1315–1321 (2015). https://doi.org/10.1007/s10895-015-1619-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1619-9

Keywords

Navigation