Skip to main content
Log in

Synthesis, Spectral Characteristics and DFT Studies of the New Dye 2,7-diacetyl-9-((dimethylamino)methylene)-9H-fluorene (DMMF) in Different Solvents

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The photophysical parameters such as electronic absorption spectra, molar absorptivity(ε), fluorescence spectra and fluorescence quantum yield (φf) of a new dye namely 2,7-diacetyl-9-((dimethylamino)methylene)-9H-fluorene (DMMF) were determined in different solvents. The electronic absorption are less sensitive to medium polarity. A bathochromic shift was observed in emission spectra(ca. 50 nm) upon increase of solvent polarity, which indicates that the singlet excited state (S1) of DMMF is more polar than the singlet ground state (So). Solid crystals of DMMF exhibit intense yellow fluorescence maximum at 550 nm with bandwidth equal 64 nm upon excitation at wavelength 365 nm. The change in dipole moment value (Δμ) was calculated by using the variation of Stokes shift with solvent polarizability (Δf) (Lippert – Mataga plot) and was found to be 7.22 and 5.5 Debye for higher and lower energy of So – S1 (π-π*) H-1 → L and So – S1 (π-π*) H → L, respectively. These results show that, the excited state is more polar than the ground state. The net photochemical quantum yields of photodecomposition of DMMF (φc) were calculated as 7.2 × 10−5, 1.14 × 10−4, 1.44 × 10−4 and 2.11 × 10−4 in different solvents such as MeOH, CH2Cl2, CHCl3 and CCl4, respectively. DFT/TD-DFT methods were used to study the geometric and electronic structures of DMMF in different solvents. A good agreement was found between the experimental and theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Denes F, Pichowicz M, Povie G, Renaud P (2014) Thiyl radicals in organic synthesis. Chem Rev 114:2587–2693

    Article  CAS  PubMed  Google Scholar 

  2. Kovacic P, Jones MB (1987) Dehydro coupling of aromatic nuclei by catalyst-oxidant systems: poly(p-phenylene). Chem Rev 87:357–379

    Article  CAS  Google Scholar 

  3. Yoshizawa M, Klosterman JK (2014) Molecular architectures of multi-anthracene assemblies. Chem Soc Rev 43:1885–1898

    Article  CAS  PubMed  Google Scholar 

  4. Wang C, Dong H, Hu W, Liu Y, Zhu D-B (2012) Semiconducting π-conjugated systems in field-effect transistors: a material Odyssey of organic electronics. Chem Rev 112:2208–2267

    Article  CAS  PubMed  Google Scholar 

  5. Arias AC, MacKenzie JD, McCulloch I, Rivnay J, Salleo A (2010) Materials and applications for large area electronics: solution-based approaches. Chem Rev 110:3–24

    Article  CAS  PubMed  Google Scholar 

  6. Clarke TM, Durrant JR (2010) Charge photogeneration in organic solar cells. Chem Rev 110:6736–6767

    Article  CAS  PubMed  Google Scholar 

  7. Watson M, Fechtenkotter A, Mullen K (2001) Big is beautiful−“aromaticity” revisited from the viewpoint of macromolecular and supramolecular benzene chemistry. Chem Rev 101:1267–1300

    Article  CAS  PubMed  Google Scholar 

  8. Figueira-Duarte TM, Mullen K (2011) Pyrene-based materials for organic electronics. Chem Rev 111:7260–7314

    Article  CAS  PubMed  Google Scholar 

  9. Ahmed SA (2009) Photochromism of dihydroindolizines. Part 12: synthesis and photochromism of novel π-conjugated rigid dihydroindolizines as potential molecular electronic devices. Tetrahedron 65:1373–1388

    Article  CAS  Google Scholar 

  10. Ahmed SA, Hozien ZA, Abdel-Wahab AA, Al-Raqa SY, Al-Simaree AA, Mousa Z, Al-Amri SN, Messali M, Soliman SA, Dürr H (2011) Photochromism of dihydroindolizines. Part 16: tuning of the photophysical behavior of photochromic dihydroindolizines in solution and in polymeric thin film. Tetrahedron 67:7173–7184

    Article  CAS  Google Scholar 

  11. Ahmed SA, Al-Raqa SY (2011) Photochromism of dihydroindolizines: part XIV. Synthesis and photophysical behavior of photochromic dihydroindolizine-tripodal linkers toward anchoring sensitizers to semiconductor nanoparticles. J Phys Org Chem 24:173–184

    Article  CAS  Google Scholar 

  12. Hu J-Y, Yamato T (2011) Organic light emitting diode—material. In: Ko S-H (ed) Process and devices. InTech, Croatia, pp 21–60

    Google Scholar 

  13. Yang SW, Elangovan A, Hwang KC, Ho TI (2005) Electronic polarization reversal and excited state intramolecular charge transfer in donor/acceptor ethynylpyrenes. J Phys Chem B 109:16628–16635

    Article  CAS  PubMed  Google Scholar 

  14. Ni X-L, Wang S, Zeng X, Tao Z, Yamato T (2011) Pyrene-linked triazole-modified Homooxacalix[3]arene: a unique C3symmetry ratiometric fluorescent chemosensor for Pb2+. Org Lett 13:552–555

    Article  CAS  PubMed  Google Scholar 

  15. Omer KM, Ku S-Y, Wong K-T, Bard AJ (2009) Efficient and stable blue electrogenerated chemiluminescence of fluorene-substituted aromatic hydrocarbons. Angew Chem Int Ed 48:9300–9303

    Article  CAS  Google Scholar 

  16. Tao S, Peng Z, Zhang X, Wang P, Lee C-S, Lee S-T (2005) Highly efficient non-doped blue organic light-emitting diodes based on fluorene derivatives with high thermal stability. Adv Funct Mater 15:1716–1721

    Article  CAS  Google Scholar 

  17. Huang L, Wu SP, Qu Y, Geng YH, Wang FS (2008) Grignard metathesis chain-growth polymerization for polyfluorenes. Macromolecules 41:8944–8947

    Article  CAS  Google Scholar 

  18. Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361–5388

    Article  CAS  PubMed  Google Scholar 

  19. Hatchard IG, Parker CA (1956) A new sensitive chemical actinometer. II. potassium ferrioxalate as a standard chemical actinometer. Proc Roy Soc London A235:518–536

  20. El-Daly SA, Hazmy SM, Ebeid EM, Bhasikuttan AC, Palit DK, Spare AV, Mittal JP (1996) Spectral, acid−base, and laser characteristics of 1,4-Bis[β-(2-quinolyl)vinyl]benzene (BQVB). J Phys Chem 100:9732–9737

    Article  CAS  Google Scholar 

  21. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  22. Dutta A, Dutta RK (2014) Fluorescence behavior of cis-methyl orange stabilized in cationic premicelles. Spectrochim Acta A Mol Biomol Spectrosc 126:270–279

    Article  CAS  PubMed  Google Scholar 

  23. Sierocki P, Maas H, Dragut P, Richardt G, Vogtle F, Cola LD, Brouwer FAM, Zink JI (2006) Photoisomerization of azobenzene derivatives in nanostructured silica. J Phys Chem B 110:24390–24398

    Article  CAS  PubMed  Google Scholar 

  24. Sakamoto R, Kume S, Sugimoto M, Nishihara H (2009) Trans–cis photoisomerization of azobenzene-conjugated dithiolato-bipyridine platinum(II) complexes: extension of photoresponse to longer wavelengths and photocontrollable tristability. Chem Eur J 15:1429–1439

    Article  CAS  PubMed  Google Scholar 

  25. Zhuang X, Ha T, Kim HD, Centner T, Labeit S, Chu S (2000) Fluorescence quenching: a tool for single-molecule protein-folding study. Proc Natl Acad Sci U S A. 97:14241–14244

  26. Kim DY, Cho HN, Kim CY (2000) Blue light emitting polymers. Prog Polym Sci 25:1089–1139

    Article  CAS  Google Scholar 

  27. Lippert E (1957) Spektroskopische Bestimmung des Dipolmomentes aromatischer Verbindungen im ersten angeregten Singulettzustand. Z Elektrochem 61:962–975

    CAS  Google Scholar 

  28. Suppan P (1990) Invited review solvatochromic shifts: the influence of the medium on the energy of electronic states. J Photochem Photobiol A Chem 50:293–330

    Article  CAS  Google Scholar 

  29. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York, p 209 (Chapter 6)

  30. Biondic MC, Erra-Balsells R (1994) Photochemical reaction of full-aromatic β-carbolines in halomethanes 2. CHCl3: electronic spectra and kinetics. Photochem Photobiol A Chem 77:149–159

    Article  CAS  Google Scholar 

  31. Biondic MC, Erra-Balsells R (1990) Photochemical reaction of β-carbolines in carbon tetrachloride-ethanol mixtures. Photochem Photobiol A Chem 51:341–353

    Article  CAS  Google Scholar 

  32. Mastsuda MCS, Kokado R, Inou HE (1970) The photoconductivity in a CCl4 solution of N,N-dimethylaniline. Bull Chem Soc Jpn 43:2994–2995

    Article  Google Scholar 

  33. Balsells RE, Farsca AR (1988) Photochemical reactions of aliphatic-amines in dichloromethane solution. Aust J Chem 41:103–110

  34. Wolinski L, Turznski Z, Witkowski K (1987) Lichtstreubefunde zur Kettenspaltung von Polystyrol in sauerstoffreien CCl4- und CHCl3-Lösungen bei Lichteinwirkung der Wellenlängen λ ≥ 270 nm. Macromol Chem Phys 188:2895–2907

  35. Bard AJ, Ledwith A, Shine HJ (1976) Formation, properties and reactions of cation radicals in solution. Adv Phys Org Chem 13:155–278

  36. El-Daly SA, Fayed TA (2000) Photochemistry of N, Ń-ditridecyl-3,4:9,10-perylenetetracarboxylic diimide in chloromethane solvents. J Photochem Photobiol A Chem 137:15–19

  37. El-Daly SA, Asiri AM, Alamry K, Khan SA (2013) Spectroscopic studies and laser activity of 3-(4-dimethylamino-phenyl)-1-(2,5-dimethyl-furan-3-yl)-propenone (DDFP): a new green laser dye. J Lumin 137:6–14

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian, Inc, Wallingford

    Google Scholar 

  39. Frisch A, Dennington RD II, Keith TA, Milliam J, Nielsen AB, Holder AJ, Hiscocks J (2007) GaussView Reference, Version 5.0. Gaussian Inc, Pittsburgh

    Google Scholar 

  40. Wolinski JK, Hincon JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  41. Gross EKU, Kohn W (1990) Time-dependent density-functional theory. Adv Quant Chem 21:255–291

    Article  CAS  Google Scholar 

  42. Cances E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041

    Article  CAS  Google Scholar 

  43. Lide DR Jr, Mann DE (1958) Microwave spectra of molecules exhibiting internal rotation. III. trimethylamine. J Chem Phys 28:572–576

    Article  CAS  Google Scholar 

  44. Gerkin RE, Lundstedt AP, Reppart WJ (1984) Structure of fluorene, C13H10, at 159 K. Acta Crystallogr C40:1892–1894

    CAS  Google Scholar 

  45. Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. J Chem Theory Comput 6:2872–2887

    Article  CAS  Google Scholar 

  46. Silverstein RM, Bassler GC, Morrill TC (1991) Spectrometric identification of organic compounds. John Willey, Chistester

    Google Scholar 

  47. Karabacak M, Cinar M (2012) FT-IR, FT-Raman, UV spectra and DFT calculations on monomeric and dimeric structure of 2-amino-5-bromobenzoic acid. Spectrochim Acta A 86:590–599

    Article  CAS  Google Scholar 

  48. Chattaraj PK, Maiti B (2003) HSAB principle applied to the time evolution of chemical reactions. J Am Chem Soc 125:2705–2710

    Article  CAS  PubMed  Google Scholar 

  49. Pearson RG (2005) Chemical hardness and density functional theory. J Chem Sci 117:369–377

    Article  CAS  Google Scholar 

  50. Aurell MJ, Domingo LR, Perez P, Contreras R (2004) A theoretical study on the regioselectivity of 1,3-dipolar cycloadditions using DFT-based reactivity indexes. Tetrahedron 60:11503–11509

    Article  CAS  Google Scholar 

  51. Reed EA, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–9026

    Article  CAS  Google Scholar 

  52. Reed EA, Weinhold F (1983) Natural bond orbital analysis of near-Hartree–Fock water dimer. J Chem Phys 78(6):4066–4073

    Article  CAS  Google Scholar 

  53. Song L, Lin Y, Wu W, Zhang Q, Mo Y (2005) Steric strain versus hyperconjugative stabilization in ethane congeners. J Phys Chem A 109(10):2310–2316

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samy A. El-Daly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asiri, A.M., Ahmed, S.A., El-Daly, S.A. et al. Synthesis, Spectral Characteristics and DFT Studies of the New Dye 2,7-diacetyl-9-((dimethylamino)methylene)-9H-fluorene (DMMF) in Different Solvents. J Fluoresc 25, 1303–1314 (2015). https://doi.org/10.1007/s10895-015-1618-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1618-x

Keywords

Navigation