Skip to main content
Log in

A Indole-Trizole-Rhodamine Triad as Ratiometric Fluorescent Probe for Nanomolar-Concentration Level Hg2+ Sensing with High Selectivity

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new type of ratiometric fluorescent probe capable of detecting Hg2+ ions at nanomolar-concentration level with high selectivity was developed based on an indole-trizole-rhodamine triad and its practicability for intracellular Hg2+ sensing was verified. The as-prepared fluorescent probe is capable of detecting Hg2+ over other competing metal ions including Ag+ with high selectivity. The synergistic effect of Hg2+-assisted conversion of the nonfluorescent ring-closed rhodamine moiety to the highly fluorescent ring-open form as well as the fluorescence signal amplification originating from the Förster resonance energy transfer (FRET) from indole-trizole conjugate to rhodamine moiety contributed to a detection limit of 11 nM of the probe for Hg2+ sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tan SW, Meiller JC, Mahaffey KR (2009) The endocrine effects of mercury in humans and wildlife. Crit Rev Toxicol 39(3):228–269

    Article  CAS  PubMed  Google Scholar 

  2. Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36(8):609–662

    Article  CAS  PubMed  Google Scholar 

  3. Gutknecht J (1981) Inorganic mercury (Hg2+) transport through lipid bilayer membranes. J Membr Biol 61(1):61–66

    Article  CAS  Google Scholar 

  4. Carvalho CML, Chew E-H, Hashemy SI, Lu J, Holmgren A (2008) Inhibition of the human thioredoxin system: a molecular mechanism of mercury toxicity. J Biol Chem 283(18):11913–11923

    Article  CAS  PubMed  Google Scholar 

  5. Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury-current exposures and clinical manifestations. N Engl J Med 349(18):1731–1737

    Article  CAS  PubMed  Google Scholar 

  6. Mahato P, Saha S, Das P, Agarwalla H, Das A (2014) An overview of the recent developments on Hg2+ recognition. RSC Adv 4(68):36140–36174

    Article  CAS  Google Scholar 

  7. Kumar N, Bhalla V, Kumar M (2014) Resonance energy transfer-based fluorescent probes for Hg2+, Cu2+ and Fe2+/Fe3+ ions. Analyst 139(3):543–558

    Article  CAS  PubMed  Google Scholar 

  8. Kim HN, Ren WX, Kim JS, Yoon J (2012) Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 41(8):3210–3244

    Article  CAS  PubMed  Google Scholar 

  9. Gao Y, De Galan S, De Brauwere A, Baeyens W, Leermakers M (2010) Mercury speciation in hair by headspace injection–gas chromatography–atomic fluorescence spectrometry (methylmercury) and combustion-atomic absorption spectrometry (total Hg). Talanta 82(5):1919–1923

    Article  CAS  PubMed  Google Scholar 

  10. Resano M, Aramendia M, Rello L, Calvo ML, Berail S, Pecheyran C (2013) Direct determination of Cu isotope ratios in dried urine spots by means of fs-LA-MC-ICPMS. Potential to diagnose Wilson’s disease. J Anal Atom Spectrom 28(1):98–106

    Article  CAS  Google Scholar 

  11. Chen Y-W, Tong J, D’Ulivo A, Belzile N (2002) Determination of mercury by continuous flow cold vapor atomic fluorescence spectrometry using micromolar concentration of sodium tetrahydroborate as reductant solution. Analyst 127(11):1541–1546

    Article  CAS  PubMed  Google Scholar 

  12. Sareen D, Kaur P, Singh K (2014) Strategies in detection of metal ions using dyes. Coord Chem Rev 265:125–154

    Article  CAS  Google Scholar 

  13. Santos-Figueroa LE, Moragues ME, Climent E, Agostini A, Martinez-Manez R, Sancenon F (2013) Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010-2011. Chem Soc Rev 42(8):3489–3613

    Article  CAS  PubMed  Google Scholar 

  14. Vendrell M, Zhai D, Er JC, Chang Y-T (2012) Combinatorial strategies in fluorescent probe development. Chem Rev 112(8):4391–4420

    Article  CAS  PubMed  Google Scholar 

  15. Zhang JF, Zhou Y, Yoon J, Kim JS (2011) Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem Soc Rev 40(7):3416–3429

    Article  CAS  PubMed  Google Scholar 

  16. Ozturk S, Atilgan S (2014) A tetraphenylethene based polarity dependent turn-on fluorescence strategy for selective and sensitive detection of Hg2+ in aqueous medium and in living cells. Tetrahedron Lett 55(1):70–73

    Article  CAS  Google Scholar 

  17. Fu N, Chen Y, Fan J, Wang G, Lin S (2014) A bifunctional “Turn On” fluorescent probe for trace level Hg2+ and EDTA in aqueous solution via chelator promoted cation induced deaggregation signalling. Sensors Actuators B Chem 203:435–443

    Article  CAS  Google Scholar 

  18. Ma X, Wang J, Shan Q, Tan Z, Wei G, Wei D, Du Y (2012) A “turn-on” fluorescent Hg2+ chemosensor based on Ferrier carbocyclization. Org Lett 14(3):820–823

    Article  CAS  PubMed  Google Scholar 

  19. Yang Y-K, Yook K-J, Tae J (2005) A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J Am Chem Soc 127(48):16760–16761

    Article  CAS  PubMed  Google Scholar 

  20. Lv Y, Zhu L, Liu H, Wu Y, Chen Z, Fu H, Tian Z (2014) Single-fluorophore-based fluorescent probes enable dual-channel detection of Ag+ and Hg2+ with high selectivity and sensitivity. Anal Chim Acta 839:74–82

    Article  CAS  PubMed  Google Scholar 

  21. Pandey S, Azam A, Pandey S, Chawla HM (2009) Novel dansyl-appended calix[4]arene frameworks: fluorescence properties and mercury sensing. Org Biomol Chem 7(2):269–279

    Article  CAS  PubMed  Google Scholar 

  22. Moon S-Y, Youn NJ, Park SM, Chang S-K (2005) Diametrically disubstituted cyclam derivative having Hg2+-selective fluoroionophoric behaviors. J Org Chem 70(6):2394–2397

    Article  CAS  PubMed  Google Scholar 

  23. Métivier R, Leray I, Valeur B (2004) Lead and mercury sensing by calixarene-based fluoroionophores bearing two or four dansyl fluorophores. Chem Eur J 10(18):4480–4490

    Article  PubMed  Google Scholar 

  24. Tsien RY, Poenie M (1986) Fluorescence ratio imaging: a new window into intracellular ionic signaling. Trends Biochem Sci 11(11):450–455

    Article  CAS  Google Scholar 

  25. Yuan L, Lin W, Zheng K, Zhu S (2013) FRET-based small-molecule fluorescent probes: rational design and bioimaging applications. Acc Chem Res 46(7):1462–1473

    Article  CAS  PubMed  Google Scholar 

  26. Fan J, Hu M, Zhan P, Peng X (2013) Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing. Chem Soc Rev 42(1):29–43

    Article  CAS  PubMed  Google Scholar 

  27. Chen G, Song F, Xiong X, Peng X (2013) Fluorescent nanosensors based on fluorescence resonance energy transfer (FRET). Ind Eng Chem Res 52(33):11228–11245

    Article  CAS  Google Scholar 

  28. Chen X, Pradhan T, Wang F, Kim JS, Yoon J (2011) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev 112(3):1910–1956

    Article  PubMed  Google Scholar 

  29. Zhang T, Chan C-F, Lan R, Wong W-K, Wong K-L (2014) Highly selective and responsive visible to near-IR Ytterbium emissive probe for monitoring mercury(II). Chem Eur J 20(4):970–973

    Article  CAS  PubMed  Google Scholar 

  30. Wang C, Zhang D, Huang X, Ding P, Wang Z, Zhao Y, Ye Y (2014) A ratiometric fluorescent chemosensor for Hg2+ based on FRET and its application in living cells. Sensors Actuators B Chem 198:33–40

    Article  CAS  Google Scholar 

  31. Li K-B, Zhang H-L, Zhu B, He X-P, Xie J, Chen G-R (2014) A per-acetyl glycosyl rhodamine as a novel fluorescent ratiometric probe for mercury (II). Dyes Pigments 102:273–277

    Article  CAS  Google Scholar 

  32. Luxami V, Verma M, Rani R, Paul K, Kumar S (2012) FRET-based ratiometric detection of Hg2+ and biothiols using naphthalimide-rhodamine dyads. Org Biomol Chem 10(40):8076–8081

    Article  CAS  PubMed  Google Scholar 

  33. Ma Q-J, Zhang X-B, Zhao X-H, Jin Z, Mao G-J, Shen G-L, Yu R-Q (2010) A highly selective fluorescent probe for Hg2+ based on a rhodamine–coumarin conjugate. Anal Chim Acta 663(1):85–90

    Article  CAS  PubMed  Google Scholar 

  34. Zhang X, Xiao Y, Qian X (2008) A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells. Angew Chem Int Ed 47(42):8025–8029

    Article  CAS  Google Scholar 

  35. Wen J, Zhu L-L, Bi Q-W, Shen Z-Q, Li X-X, Li X, Wang Z, Chen Z (2014) Highly N2-selective coupling of 1,2,3-triazoles with indole and pyrrole. Chem Eur J 20(4):974–978

    Article  CAS  PubMed  Google Scholar 

  36. Rurack K, Kollmannsberger M, Resch-Genger U, Daub J (2000) A selective and sensitive fluoroionophore for Hg(II), Ag(I), and Cu(II) with virtually decoupled fluorophore and receptor units. J Am Chem Soc 122:968

    Article  CAS  Google Scholar 

  37. Liu L, Zhang GX, Xiang JF, Zhang DQ, Zhu DB (2008) Fluorescence “turn on” chemosensors for Ag+ and Hg2+ based on tetraphenylethylene motif featuring adenine and thymine moieties. Org Lett 10:4581

    Article  CAS  PubMed  Google Scholar 

  38. Chen T, Zhu WP, Xu YF, Zhang SY, Zhang XJ, Qian XH (2010) Discovery of a highly selective turn-on fluorescent probe for Ag+. Dalton Trans 39:1316

    Article  CAS  PubMed  Google Scholar 

  39. Xu ZC, Zheng SJ, Yoon JY, Spring DR (2010) Discovery of a highly selective turn-on fluorescent probe for Ag+. Analyst 135:2554

    Article  CAS  PubMed  Google Scholar 

  40. Kai Y, Yang S, Gao X, Hu Y (2014) Colorimtric and “turn-on” fluorescent for Hg2+ based on rhodamine-3,4-ethylenedioxythiophene derivative. Sensors Actuators B Chem 202:252–256

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (grant no. 21173262 and 21373218) and the “Hundred-Talent Program” of CAS to ZT is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Wang, Zili Chen or Zhiyuan Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Ding, H., Zhu, L. et al. A Indole-Trizole-Rhodamine Triad as Ratiometric Fluorescent Probe for Nanomolar-Concentration Level Hg2+ Sensing with High Selectivity. J Fluoresc 25, 1259–1266 (2015). https://doi.org/10.1007/s10895-015-1614-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1614-1

Keywords

Navigation