Skip to main content
Log in

Pyridine Based Fluorescence Probe: Simultaneous Detection and Removal of Arsenate from Real Samples with Living Cell Imaging Properties

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Pyridine based fluorescence probe, DFPPIC and its functionalized Merrifield polymer has been synthesized, characterized and used as an arsenate selective fluorescence sensor. Arsenate induced fluorescence enhancement is attributed to inter-molecular H-bonding assisted CHEF process. The detection limit for arsenate is 0.001 μM, much below the WHO recommended tolerance level in drinking water. DFPPIC can detect intracellular arsenate in drinking water of Purbasthali, West Bengal, India efficiently.

DFPPIC and its Merrifield conjugate polymer are used for selective determination and removal of arsenate from real drinking water samples of Purbasthali, a highly arsenic contaminated region of West Bengal, India. DFPPIC is very promising to imaging arsenate in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Ensafi AA, Ring AC, Fritsch I (2010) Highly sensitive voltammetric speciation and determination of inorganic arsenic in water and alloy samples using ammonium 2-amino-1-cyclopentene-1-dithiocarboxylate. Electroanal 22(1175):1185

    Google Scholar 

  2. Boyle RW, Jonasson IR (1973) The geochemistry of arsenic and its use as an indicator element in geochemical prospecting. J Geochem Explor 2(251):296

    Google Scholar 

  3. Hasegawa H, Matsui M, Okamura S, Hojo M, Iwasaki N, Sohrin Y (1999) Arsenic speciation including ‘hidden’ arsenic in natural water. Appl Organomet Chem 13(113):119

    Google Scholar 

  4. Morales KH, Ryan L, Kuo TL, Wu MM, Chen CJ (2000) Risk of internal cancers from arsenic in drinking water. Environ Health Perspect 108(655):661

    Google Scholar 

  5. WHO (2011) Guidelines for drinking-water quality, 4th ed.; World Health Organization: Geneva, Switzerland

  6. Quang DT, Kim JS (2010) Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and bio-specimens. Chem Rev 110(6280):6301

    Google Scholar 

  7. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110(2620):6240

    Google Scholar 

  8. Callan JF, Silva APD, Magri DC (2005) Luminescent sensors and switches in the early 21st century. Tetrahedron 61(8551):8588

    Google Scholar 

  9. Demchenko AP (2008) Introduction to fluorescence sensing. Springer, New York

    Google Scholar 

  10. Xu Z, Xiao Y, Qian X, Cui J, Cui D (2005) Ratiometric and selective fluorescent sensor for CuII based on internal charge transfer (ICT). Org Lett 7(889):892

    Google Scholar 

  11. Wang JB, Qian XF, Cui JN (2006) Detecting Hg2+ ions with an ICT fluorescent sensor molecule: remarkable emission spectra shift and unique selectivity. J Org Chem 71(4308):4311

    Google Scholar 

  12. Gunnlaugsson T, Davis AP, Brien JEO, Glynn M (2002) Fluorescent sensing of pyrophosphate and bis-carboxylates with charge neutral PET chemosensors. Org Lett 4(2449):2452

    Google Scholar 

  13. Vance DH, Czarnik AW (1994) Real-time assay of inorganic pyrophosphatase using a high-affinity chelation-enhanced fluorescence chemosensor. J Am Chem Soc 116(9397):9398

    Google Scholar 

  14. Kim SK, Yoon J (2002) A new fluorescent PET chemosensor for fluoride ions. Chem Commun 770

  15. Banerjee A, Sahana A, Das S, Lohar S, Guha S, Sarkar B, Mukhopadhyay SK, Mukherjee AK, Das D (2012) A naphthalene exciplex based Al3+ selective on-type fuorescent probe for living cells at the physiological pH range: experimental and computational studies. Analyst 137(2166):2175

    Google Scholar 

  16. Lim NC, Schuster JV, Porto MC, Tanudra MA, Yao L, Freake HC, Bruckner C (2005) Coumarin-based chemosensors for Zinc(II): toward the determination of the design algorithm for CHEF-type and ratiometric probes. Inorg Chem 44(2018):2030

    Google Scholar 

  17. Das S, Sahana A, Banerjee A, Lohar S, Guha S, Matalobos JS, Das D (2012) Thiophene anchored naphthalene derivative: Cr3+ selective turn-on fluorescent probe for living cell imaging. Anal Methods 4(2254):2258

    Google Scholar 

  18. Sahana A, Banerjee A, Das S, Lohar S, Karak D, Sarkar B, Mukhopadhyay SK, Mukherjee AK, Das D (2011) A naphthalene-based Al3+ selective fluorescent sensor for living cell imaging. Org Biomol Chem 9(5523):5529

    Google Scholar 

  19. Das S, Dutta M, Das D (2013) Fluorescent probes for selective determination of trace level Al3+: recent developments and future prospects. Anal Methods 5(6262):6285

    Google Scholar 

  20. Beer PD (1998) Transition-metal receptor systems for the selective recognition and sensing of anionic guest species. Acc Chem Res 31(71):80

    Google Scholar 

  21. Kim MJ, Konduri R, Ye H, MacDonnell FM, Puntoriero F, Serroni S, Campagna S, Holder T, Kinsel G, Rajeshwar K (2002) Dinuclear ruthenium(II) polypyridyl complexes containing large, redox-active, aromatic bridging ligands: synthesis, characterization, and intramolecular quenching of MLCT excited states. Inorg Chem 41(2471):2476

    Google Scholar 

  22. Nishizawa S, Kato Y, Teramae N (1999) Fluorescence sensing of anions via intramolecular excimer formation in a pyrophosphate-induced self-assembly of a pyrene-functionalized guanidinium receptor. J Am Chem Soc 121(9463):9464

    Google Scholar 

  23. Wu JS, Zhou JH, Wang PF, Zhang XH, Wu SK (2005) New fluorescent chemosensor based on exciplex signaling mechanism. Org Lett 7(2133):2136

    Google Scholar 

  24. Schazmann B, Alhashimy N, Diamond D (2006) Chloride selective Calix[4]arene optical sensor combining urea functionality with pyrene excimer transduction. J Am Chem Soc 128(8607):8614

    Google Scholar 

  25. Banerjee A, Sahana A, Guha S, Lohar S, Hauli I, Mukhopadhyay SK, Matalobos JS, Das D (2012) Nickel(II)-induced excimer formation of a naphthalene-based fluorescent probe for living cell imaging. Inorg Chem 51(5699):5704

    Google Scholar 

  26. Sahana A, Banerjee A, Lohar S, Guha S, Das S, Mukhopadhyay SK, Das D (2012) Cd(II)-triggered excimer–monomer conversion of a pyrene derivative: time dependent red-shift of monomer emission with cell staining application. Analyst 137(3910):3913

    Google Scholar 

  27. Sahana A, Banerjee A, Guha S, Lohar S, Chattopadhyay A, Mukhopadhyay SK, Das D (2012) Highly selective organic fluorescent probe for azide ion: formation of a “molecular ring”. Analyst 137(1544):1546

    Google Scholar 

  28. Peng X, Wu Y, Fan J, Tian M, Han K (2005) Colorimetric and ratiometric fluorescence sensing of fluoride: tuning selectivity in proton transfer. Org Chem 70(10524):10531

    Google Scholar 

  29. Das S, Guha S, Banerjee A, Lohar S, Sahana A, Das D (2011) 2-(2-Pyridyl) benzimidazole based Co(II) complex as an efficient fluorescent probe for trace level determination of aspartic and glutamic acid in aqueous solution: a displacement approach. Org Biomol Chem 9(7097):7104

    Google Scholar 

  30. Serin JM, Brousmiche DW, Frechet JMJ (2002) A FRET-based ultraviolet to near-infrared frequency converter. J Am Chem Soc 124(11848):11849

    Google Scholar 

  31. Albers AE, Okreglak VS, Chang CJ (2006) A FRET-Based approach to ratiometric fluorescence detection of hydrogen peroxide. J Am Chem Soc 128(9640):9641

    Google Scholar 

  32. Lee SH, Kim SK, Bok JH, Lee SH, Yoon J, Lee K, Kim JS (2005) Singlet oxygen generation via two-photon excited FRET. Tetrahedron Lett 46(8163):8167

    Google Scholar 

  33. Dichtel WR, Serin JM, Edder C, Frechet JMJ, Matuszewski M, Tan LS, Ohulchanskyy TY, Prasad PN (2004) Singlet oxygen generation via two-photon excited FRET. J Am Chem Soc 2004(126):5380–5381

    Article  Google Scholar 

  34. Suresh M, Mishra S, Mishra SK, Suresh E, Mandal AK, Shrivastav A, Das A (2009) Resonance energy transfer approach and a New ratiometric probe for Hg2+ in aqueous media and living organism. Org Lett 11(2740):2743

    Google Scholar 

  35. Mahato P, Saha S, Suresh E, Liddo RD, Parnigotto PP, Conconi MT, Kesharwani MK, Ganguly B, Das A (2012) Ratiometric Detection of Cr3+ and Hg2+ by a naphthalimide-rhodamine based fluorescent probe. Inorg Chem 51(1769):1777

    Google Scholar 

  36. Sreenath K, Allen J, Davidson RMW, Zhu L (2011) A FRET-based indicator for imaging mitochondrial zinc ions. Chem Commun 47:11730–11732

    Article  CAS  Google Scholar 

  37. Wandell RJ, Younes AH, Zhu L (2010) Metal - coordination - mediated sequential Chelation-enhanced fluorescence (CHEF) and fluorescence resonance energy transfer (FRET) in a heteroditopic ligand system. New J Chem 34(2176):2182

    Google Scholar 

  38. Lohar S, Banerjee A, Sahana A, Banik A, Mukhopadhyay SK, Das D (2013) A rhodamine–naphthalene conjugate as a FRET based sensor for Cr3+ and Fe3+ with cell staining application. Anal Methods 5(442):445

    Google Scholar 

  39. Sahana A, Banerjee A, Lohar S, Sarkar B, Mukhopadhyay SK, Das D (2013) Rhodamine-based fluorescent probe for Al3+ through time-dependent PET–CHEF–FRET processes and its cell staining application. Inorg Chem 52(3627):3633

    Google Scholar 

  40. Lohar S, Sahana A, Banerjee A, Banik A, Mukhopadhyay SK, Matalobos JS, Das D (2013) Antipyrine based arsenate selective fluorescent probe for living cell imaging. Anal Chem 85(1778):1783

    Google Scholar 

  41. Sahana A, Banerjee A, Lohar S, Panja S, Mukhopadhyay SK, Matalobos JS, Das D (2013) Fluorescence sensing of arsenate at nanomolar level in a greener way, naphthalene based probe for living cell imaging. Chem Commun 49(7231):7233

    Google Scholar 

  42. Banerjee A, Sahana A, Lohar S, Panja S, Mukhopadhyay SK, Das D (2014) Visible light excitable fluorescence probe and its functionalized Merrifield polymer: selective sensing and removal of arsenate from real samples. RSC Adv 4(3887):3892

    Google Scholar 

  43. Denton DA, Suschitzky H (1963) Synthetic uses of polyphosphoric acid. J Chem Soc 4741:4743

    Google Scholar 

  44. Austin E, Gouterman M (1978) Porphyrins. XXXVII. Absorption and emission of weak complexes with acids, bases, and salts. Bioinorg Chem 9(281):298

    Google Scholar 

  45. Van Houten J, Watts RJ (1976) Temperature dependence of the photophysical and photochemical properties of the tris (2, 2′-bipyridyl) ruthenium(II) ion in aqueous solution. J Am Chem Soc 98(4853):4858

    Google Scholar 

  46. Park SW, Kim CW, Lee JH, Shim G, Kim KS (2011) Comparison of arsenic acid with phosphoric acid in the interaction with a water molecule and an alkali/alkaline-earth metal cation. J Phys Chem A 115(11355):11361

    Google Scholar 

  47. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71(2703):2707

    Google Scholar 

  48. Biswas B (2010) West Bengal, India, Geomorphic controls of arsenic in ground water in Purbasthali I & II Blocks of Burdwan district. Int J Environ Sci 4(429):439

    Google Scholar 

Download references

Acknowledgments

Financial support from DST (Govt. of West Bengal) is gratefully acknowledged. S. Nandi and A. Sahana are grateful to UGC and CSIR, New Delhi for fellowship. We thank CAS (B. U.) for infrastructural and financial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandi, S., Sahana, A., Sarkar, B. et al. Pyridine Based Fluorescence Probe: Simultaneous Detection and Removal of Arsenate from Real Samples with Living Cell Imaging Properties. J Fluoresc 25, 1191–1201 (2015). https://doi.org/10.1007/s10895-015-1606-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1606-1

Keywords

Navigation