Journal of Fluorescence

, Volume 25, Issue 2, pp 433–440 | Cite as

Nanospherical Silica as Luminescent Markers Obtained by Sol–Gel

  • Caroline B. Azevedo
  • TúlioM. Batista
  • Emerson H. de Faria
  • Lucas A. Rocha
  • Katia J. Ciuffi
  • Eduardo J. Nassar


Hybrid nanosilicas constitute a broad study field. They find application as catalysts, pigments, drug delivery systems, and biomaterials, among others, and it is possible to obtain them via the sol–gel methodology. Lanthanide ions present special properties like light emission. Their incorporation into a silica matrix can enhance their luminescent properties, which enables their application as luminescent markers. This work reports on (i) the preparation of luminescent spherical hybrid silica nanoparticles by the hydrolytic sol–gel methodology, (ii) doping of the resulting matrix with the europium(III) ion or its complex with 1,10-phenanthroline, and (iii) characterization of the final powders by scanning electron microscopy, infrared spectroscopy, X-ray diffraction, and europium(III) ion photoluminescence. The synthesized materials consisted of hybrid, amorphous, polydispersed nonspherical silicas with average size of 180 nm. Photoluminescence confirmed incorporation of the europium(III) ion and its complex into the silica matrix—the ligand-metal charge transfer band emerged in the excitation spectra. The emission spectra presented the bands corresponding to the transition of the excited state 5D0 level to 7FJ (J = 0, 1, 2, 3 and 4). The main emission occurred in the red region; the lifetime was long. These characteristics indicated that the prepared nanospherical hybrid silicas could act as luminescent markers.


Europium III complex Sol–gel Luminescent 



The authors acknowledge the Brazilian research funding agencies CNPq, CAPES, and (grant 2011/15199–1 C.B.A; 2011/09823–4 and 2012/11673–3 E.J.N.) São Paulo Research Foundation (FAPESP).


  1. 1.
    Sanchez C, Boissiere C, Cassaignon S, Chaneac C, Durupthy O, Faustini M, Grosso D, Laberty-Robert C, Nicole L, Portehault D, Ribot F, Rozes L, Sassoye C (2013) Molecular engineering of funtional inorganic and hybrid materials. Chem Mater 1–20Google Scholar
  2. 2.
    José NM, Prado LASA (2005) Materiais Híbridos Orgânicos-Inorgânicos: preparação e Algumas Aplicações. Quim Nova 28:281–288CrossRefGoogle Scholar
  3. 3.
    Sanchez C, Bellevillec P, Popalld M, Nicoleab L (2011) Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev 40:696–753CrossRefPubMedGoogle Scholar
  4. 4.
    Sanchez C, Rozes L, Ribot F, Laberty-Robert C, Grosso D, Sassoye C, Boissiere C, Nicole L (2010) Chimie douce: a land of opportunities for the designed construction of functional inorganic and hybrid organic–inorganic nanomaterials. C R Chim 13:3–39CrossRefGoogle Scholar
  5. 5.
    Schimidt H, Krug H (1994) Sol–gel based inorganic–organic composites materials In: Neilsen PW, Allcok HR, Wynne KJ (Ed.). Inorganic and organometallic polymers II. Washington, D. C.: American Chemical Society 15:183–194.Google Scholar
  6. 6.
    Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592CrossRefGoogle Scholar
  7. 7.
    Sanchez C, François R (1994) Design of hybrid organic–inorganic materials synthesized via solgel chemistry. New J Chem 18:1007–1047Google Scholar
  8. 8.
    Park M, Komarneni S (1998) Effect of substituted alkyl groups on textural properties of ORMOSILs. J Mater Sci 33:3817–3821CrossRefGoogle Scholar
  9. 9.
    del Monte F, Cheben P, Grover CP, Mackenzie JD. (1999) Preparation and Optical Characterization of Thick-Film Zirconia and Titania Ormosils. J Sol–Gel Sci Technol. 15:73–85.Google Scholar
  10. 10.
    Altman JC, Stone RE, Dunn B, Nishida F (1991) Solid-state laser using a Rhodamine-doped silica-gel compound. IEEE Photon Technol Lett 3:189–190CrossRefGoogle Scholar
  11. 11.
    Wojcik AB, Klein LC (1995) Transparent Inorganic/Organic Copolymers by the Sol–Gel Process: Copolymers of Tetraethyl Orthosilicate (TEOS), Vinyl Triethoxysilane (VTES) and (Meth)acrylate Monomers. J Sol–Gel Sci Technol 4:57–66CrossRefGoogle Scholar
  12. 12.
    Reisfeld R, Gvishi R, Burshtein Z (1995) Photostability and loss mechanism of solid-state red perylimide dye lasers. J Sol–Gel Sci Technol 4:49–55CrossRefGoogle Scholar
  13. 13.
    Gvishi R (2009) Fast sol–gel technology: from fabrication to applications. J Sol–Gel Sci Technol 50:241–253CrossRefGoogle Scholar
  14. 14.
    Gupta R, Chaudhury NK (2007) Entrapment of biomolecules in sol–gel matrix for applications in biosensors: Problems and future prospects. Biosens Bioelectron 22:2387–2399CrossRefPubMedGoogle Scholar
  15. 15.
    Ibrahima WAW, Veloo KV, Sanagia MM (2012) Novel sol–gel hybrid methyltrimethoxysilane–tetraethoxysilane as solid phase extraction sorbent for organophosphorus pesticides. J. Chromatogr A 1229:55–62CrossRefGoogle Scholar
  16. 16.
    Nadargi DY, Kalesh RR, Rao AV (2009) Rapid reduction in gelation time and impregnation of hydrophobic property in the tetraethoxysilane (TEOS) based silica aerogels using NH4F catalyzed single step sol–gel process. J Alloys Compd 480:689–695CrossRefGoogle Scholar
  17. 17.
    Gvishi R, Strum G, Shitrit N, Dror R (2008) Optical waveguide fabrication using a fast sol–gel method. Opt Mater 30:1755–1758CrossRefGoogle Scholar
  18. 18.
    Morpurgo M, Teoli D, Palazzo B, Bergamin E, Realdon N, Guglielmi M (2005) Influence of synthesis and processing conditions on the release behavior and stability of sol–gel derived silica xerogels embedded with bioactive compounds. Il Farmaco 60:675–683CrossRefPubMedGoogle Scholar
  19. 19.
    Azevedo CB, Souza EA, Faria EH, Rocha LA, Calefi PS, Ciuffi KJ, Nassar EJ (2013) Optical properties of Eu-doped hybrid materials prepared from dimethyl and methyl alkoxides precursors. J Lumin 134:551–557CrossRefGoogle Scholar
  20. 20.
    Avila LR, Nassor ECO, Pereira PFS, Cestari A, Ciuffi KJ, Calefi PS, Nassar EJ (2008) Preparation and properties of europium-doped phosphosilicate glasses obtained by the sol–gel method. J Non-Cryst Solids 354:4806–4810CrossRefGoogle Scholar
  21. 21.
    Nassor ECO, Ávila LR, Pereira PFS, Ciuffi KJ, Calefi PS, Nassar EJ (2011) Influence of the hydrolysis and condensation time on the preparation of hybrid materials. Mater Res 14:1–6CrossRefGoogle Scholar
  22. 22.
    Nassar EJ, Messaddeq Y, Ribeiro SJL (2002) Influência da catálise ácida e básica na preparação da sílica funcionalizada pelo método sol–gel. Quim Nova 25:27–31CrossRefGoogle Scholar
  23. 23.
    Pei X, Zhang B, Tang J, Liu B, Lai W, Tang D (2013) Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: a review. Anal Chim Acta 758:1–18CrossRefPubMedGoogle Scholar
  24. 24.
    Knopp D, Tang D, Niessner R (2009) Review: bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles. Anal Chim Acta 647:14–30CrossRefPubMedGoogle Scholar
  25. 25.
    Cháfer-Pericás C, Maquieira A, Puchades R (2012) Functionalized inorganic nanoparticles used as labels in solid-phase immunoassays. Trends Anal Chem 31:144–156CrossRefGoogle Scholar
  26. 26.
    Cummins CM, Koivunen ME, Stephanian A, Geeb SJ, Hammock BD, Kennedy IM (2006) Application of europium(III) chelate-dyed nanoparticle labels in a competitive atrazine fluoroimmunoassay on an ITO waveguide. Biosens Bioelectron 21:1077–1085CrossRefPubMedGoogle Scholar
  27. 27.
    Diamandis EP (1988) Immunoassays with time-resolved fluorescence spectroscopy: principles and applications. Clin Biochem 21:139–150CrossRefPubMedGoogle Scholar
  28. 28.
    Martins TS, Isolani PC (2005) Terras raras: aplicações industriais e biológicas. Quim Nova 28:111–117CrossRefGoogle Scholar
  29. 29.
    Wu X, Wu M, Zhao JX (2013) Recent development of silica nanoparticles as delivery vectors for cancer imaging and therapy. Nanotechnology, Biology, and Medicine, Nanomedicine. doi: 10.1016/j.nano.2013.08.008 Google Scholar
  30. 30.
    Lourenço AVS, Kodaira CA, Ramos-Sanchez EM, Felinto MCFC, Goto H, Gidlund M, Malta OL, Brito HF (2013) Luminescent material based on the [Eu(TTA)3(H2O)2] complex incorporated into modified silica particles for biological applications. J Inorg Biochem 123:11–17CrossRefPubMedGoogle Scholar
  31. 31.
    Bitar A, Ahmad NM, Fessi H, Elaissari A (2012) Silica-based nanoparticles for biomedical applications. Drug Discov Today 17:1147–1154CrossRefPubMedGoogle Scholar
  32. 32.
    Sousa FJ, de Lima GPA, Pereira PFS, Ávila LR, Ciuffi KJ, Nassar EJ, Calefi PS (2010) Incorporation of luminescent complex into nanoparticles and films obtained by the sol–gel methodology. Mater Res 13:71–75CrossRefGoogle Scholar
  33. 33.
    Ribeiro TJ, de Lima OJ, de Faria EH, Rocha LA, Calefi PS, Ciuffi KJ, Nassar EJ (2014) Calcium phosphate as precursors of hydroxyapatite. An Acad Bras Cienc 86:217–226CrossRefGoogle Scholar
  34. 34.
    Al-Harbi T, Al-Hazmi F, Mahmoud WE (2012) Synthesis and characterization of nanoporous silica film via non-surfactant template sol–gel technique. Superlattice Microst 52:643–647CrossRefGoogle Scholar
  35. 35.
    Wang X-D, Shen Z-X, Sang T, Cheng X-B, Li M-F, Chen L-Y, Wang Z-S (2010) Preparation of spherical silica particles by Stöber process with high concentration of tetra-ethyl-orthosilicate. J Colloid Interface Sci 341:23–29CrossRefPubMedGoogle Scholar
  36. 36.
    Takeda Y, Komori Y, Yoshitake H (2013) Direct Stöber synthesis of monodisperse silica particles functionalized with mercapto-, vinyl- and aminopropylsilanes in alcohol–water mixed solvents. Colloids Surf A Physicochem Eng Asp 422:68–74CrossRefGoogle Scholar
  37. 37.
    Bertoluzza A, Fagnano C, Morelli MA, Gottardi V, Guglielmi M (1982) Raman and infrared spectra on silical-gel evolving toward glass. J Non-Cryst Solids 48:117–128CrossRefGoogle Scholar
  38. 38.
    Duran A, Navarro JMF, Casariego P, Joglar A (1986) Structural considerations about SiO2 glasses prepared by sol–gel. J Non-Cryst Solids 82:69–77CrossRefGoogle Scholar
  39. 39.
    Nassar EJ, Neri CR, Calefi PS, Serra OA (1999) Functionalized silica sinthesized by sol–gel process. J Non-Cryst Solids 247:124–128CrossRefGoogle Scholar
  40. 40.
    Sheng K, Yan B (2009) Coordination bonding assembly and photophysical properties of Europium organic/inorganic/polymeric hybrid materials. J Photochem Photobiol A Chem 206:140–147CrossRefGoogle Scholar
  41. 41.
    Liu D, Shi Q, Wang Z (2012) Color-tunable heat-resistant polyaryletherketones co-coordinated with various rare earth ions. Opt Mater 34:1815–1821CrossRefGoogle Scholar
  42. 42.
    Cunjin X (2010) Photophysical properties of a new ternary europium complex with 2-thenoyltrifluoroacetone and 5-nitro-1,10-phenanthroline. J Rare Earths 28:854–857CrossRefGoogle Scholar
  43. 43.
    Serra OA, Nassar EJ, Zapparolli G, Rosa ILV (1994) Organic complexes of Eu III supported in functionalyzed silica gel: highly luminescent materials. J Alloys Compd 207–208:454–456CrossRefGoogle Scholar
  44. 44.
    Matos MG, de Faria EH, Rocha LA, Calefi PS, Ciuffi KJ, Nassar EJ, Sarmento VHV (2014) Synthesis and photoluminescent properties of yttrium vanadate phosphor prepared by the non-hydrolytic sol–gel process. J Lumin 147:190–195CrossRefGoogle Scholar
  45. 45.
    Dutra JDL, Bispo TD, Freire RO (2014) LUMPAC Lanthanide Luminescence Software: efficient and user friendly. J Comput Chem 35:772–775CrossRefGoogle Scholar
  46. 46.
    Mesquita ME, Silva FRG, Albuquerque RQ, Freire RO, Conceição EC, da Silva JEC, Júnior NBC, Sá GF (2004) Eu(III) and Gd(III) complexes with pirazyne-2-carboxylic acid: luminescence and modelling of the structure and energy transfer process. J Alloys Compd 366:124–131CrossRefGoogle Scholar
  47. 47.
    Souza AP, Rodrigues LCV, Brito HF, Alves Jr S, Malta OL (2010) Photoluminescence study of new lanthanide complexes with benzene seleninic acids. J Lumin 130:181–189CrossRefGoogle Scholar
  48. 48.
    da Silva AA, Davolos MR (2011) Determination of the local site occupancy of Eu3+ ions in ZnAl2O4 nanocrystalline powders. Opt Mater 33:1226–1233CrossRefGoogle Scholar
  49. 49.
    Jorgensen CK, Reisfeld R (1983) Judd-Ofelt parameters and chemical bonding. J Less-Common Met 93:107–112CrossRefGoogle Scholar
  50. 50.
    Nassar EJ, Pereira PFS, de Oliveira Nassor EC, Ávila LR, Ciuffi KJ, Calefi PS (2007) Nonhydrolytic sol–gel synthesis and characterization of YAG. J Mater Sci 42:2244–2249CrossRefGoogle Scholar
  51. 51.
    Babu AB, Jamalaiah BC, Suhasini T, Rao TS, Moorthy LR (2011) Optical properties of Eu3+ ions in lead tungstate tellurite glasses. Solid State Sci 13:574–578CrossRefGoogle Scholar
  52. 52.
    Lima PP, Malta OL, Alves Jr S (2005) Estudo Espectroscópico de Complexos de Eu3+, Tb3+ e Gd3+ com Ligantes Derivados de Ácidos Dipicolínicos. Quim Nova 28:805–808CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Caroline B. Azevedo
    • 1
  • TúlioM. Batista
    • 1
  • Emerson H. de Faria
    • 1
  • Lucas A. Rocha
    • 1
  • Katia J. Ciuffi
    • 1
  • Eduardo J. Nassar
    • 1
  1. 1.Universidade de FrancaFrancaBrazil

Personalised recommendations