Skip to main content
Log in

Development of a Nile-Blue Based Chemodosimeter for Hg2+ in Aqueous Solution and its Application in Biological Imaging

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A Nile blue-based chemodosimeter was newly synthesized. It can detect Hg2+ in aqueous solution based on desulfurization reaction. Upon its addition into aqueous Hg2+ ion solution, it exhibited a considerable blue-shift in its absorption and obvious fluorescence quenching. The detection mechanism was proved by mass spectrometry analysis and Gaussian calculations. Detection at an emission of 685 nm was extremely sensitive, with a detection limit of 2.5 × 10−9 mol/L. The fluorescent images in living cells and zebrafish demonstrate its potential for studying the accumulation of mercury species in organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9

Similar content being viewed by others

References

  1. Chen X et al (2010) Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev 39(6):2120–2135

    Article  CAS  PubMed  Google Scholar 

  2. Feng X et al (2010) Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors. Chem Soc Rev 39(7):2411–2419

    Article  CAS  PubMed  Google Scholar 

  3. Xu Z, Yoon J, Spring DR (2010) Fluorescent chemosensors for Zn2+. Chem Soc Rev 39(6):1996–2006

    Article  CAS  PubMed  Google Scholar 

  4. Vernet P (1991) Heavy metals in the environment. Elsevier, New York

    Google Scholar 

  5. Charlet L et al (2012) Neurodegenerative diseases and exposure to the environmental metals Mn, Pb, and Hg. Coord Chem Rev 256(19–20):2147–2163

    Article  CAS  Google Scholar 

  6. Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107(2):641–662

    Article  CAS  PubMed  Google Scholar 

  7. Wade CR et al (2010) Fluoride Ion complexation and sensing using organoboron compounds. Chem Rev 110(7):3958–3984

    Article  CAS  PubMed  Google Scholar 

  8. Keum D, Kim S, Kim Y (2014) A fluorescence turn-on sensor for the detection of palladium ions that operates through in situ generation of palladium nanoparticles. Chem Commun 50(10):1268–1270

    Article  CAS  Google Scholar 

  9. Guo Z et al (2014) Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem Soc Rev 43(1):16–29

    Article  PubMed  Google Scholar 

  10. Zhang X, Xiao Y, Qian X (2008) A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells. Angew Chem Int Ed 47(42):8025–8029

    Article  CAS  Google Scholar 

  11. Wang GK et al (2014) A pyrene derivative for Hg2+-selective fluorescent sensing and its application in in vivo imaging. Chem Asian J 9(3):744–748

    Article  CAS  PubMed  Google Scholar 

  12. Meng Q et al (2011) A hybrid mesoporous material functionalized by 1,8-naphthalimide-base receptor and the application as chemosensor and absorbent for Hg2+ in water. Talanta 84(1):53–59

    Article  CAS  PubMed  Google Scholar 

  13. Du J et al (2012) Fluorescent chemodosimeters using “mild” chemical events for the detection of small anions and cations in biological and environmental media. Chem Soc Rev 41(12):4511–4535

    Article  CAS  PubMed  Google Scholar 

  14. Yang Y et al (2013) Luminescent chemodosimeters for bioimaing. Chem Rev 113:192–270

    Article  CAS  PubMed  Google Scholar 

  15. Hirano T et al (2000) Highly zinc-selective fluorescent sensor molecules suitable for biological applications. J Am Chem Soc 122(49):12399–12400

    Article  CAS  Google Scholar 

  16. Wang J et al (2005) A pH-resistant Zn(ii) sensor derived from 4-aminonaphthalimide: design, synthesis and intracellular applications. J Mater Chem 15(27–28):2836–2839

    Article  CAS  Google Scholar 

  17. Zhang W et al (2009) A highly sensitive acidic pH fluorescent probe and its application to HepG2 cells. Analyst 134(2):367–371

    Article  CAS  PubMed  Google Scholar 

  18. Yuan L, Lin W, Feng Y (2011) A rational approach to tuning the pKa values of rhodamines for living cell fluorescence imaging. Org Biomol Chem 9(6):1723–1726

    Article  CAS  PubMed  Google Scholar 

  19. Duke RM et al (2010) Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chem Soc Rev 39(10):3936–3953

    Article  CAS  PubMed  Google Scholar 

  20. Fan J et al (2014) Fluorescence imaging lysosomal changes during cell division and apoptosis observed using Nile blue based near-infrared emission. Chem Commun 50(7):882–884

    Article  CAS  Google Scholar 

  21. Zhu B et al (2011) A 4-hydroxynaphthalimide-derived ratiometric fluorescent chemodosimeter for imaging palladium in living cells. Chem Commun 47(30):8656–8658

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheesseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochetershk JW, Martin RL, Morokuma K, Zakrzewshi VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) The gaussian 09 package refer to gaussian 09, revision a.02. Gaussian, Inc, Inc., Wallingford CT

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Public science and technology research funds projects of ocean (201505021–2, 201005023–4), and Youth science funds project of ocean (2013560).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingming Hu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Yin, J., Li, Y. et al. Development of a Nile-Blue Based Chemodosimeter for Hg2+ in Aqueous Solution and its Application in Biological Imaging. J Fluoresc 25, 403–408 (2015). https://doi.org/10.1007/s10895-015-1527-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1527-z

Keywords

Navigation