Skip to main content

Advertisement

Log in

Colorimetric and Fluorogenic Recognition of Hg2+ and Cr3+ in Acetonitrile and their Test Paper Recognition in Aqueous Media with the Aid of Rhodamine Based Sensors

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Two new rhodamine derivatives (L 1 and L 2 ) were synthesized, characterized and their ion recognition property has been investigated. Both of the ionophores exhibit colorimetric and fluorogenic response for Hg2+ and Cr3+ ions among large number of alkali, alkaline earth and transition metal ions tested in acetonitrile. Detail studies on determination of binding constant, binding mode, reversibility of binding, lower detection limit have been carried out. Detection of metal ions in aqueous media has also been demonstrated by preparation of simple, convenient and disposable test paper sensors with two approaches viz. filter paper and membrane filter loaded with these ionophores. Both of these methods responded sharply to both the metal ions (Hg2+ and Cr3+) in aqueous solution, detectable by bared-eye. For better sensing at low concentration of metal ions, reprecipitation followed by filtration enrichment of ligands on membrane filter was employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bellinger DC, Trachtenberg F, Barregard L, Tavares M, Cernichiari E, Daniel D, McKinlay S (2006) Neuropsychological and renal effects of dental amalgam in children. JAMA 295(15):1775–1783

    Article  CAS  PubMed  Google Scholar 

  2. Ibrahim D, Froberg B, Wolf A, Rusyniak DE (2006) Heavy metal poisoning: clinical presentations and pathophysiology. Clin Lab Med 26(1):67–97

    Article  PubMed  Google Scholar 

  3. Mozaffarian D, Rimm EB (2006) Fish intake, contaminants, and human health. JAMA 296(15):1885–1899

    Article  CAS  PubMed  Google Scholar 

  4. Counter SA, Buchanan LH (2004) Mercury exposure in children: a review. Toxicol Appl Pharmacol 198:209–230

    Article  CAS  PubMed  Google Scholar 

  5. Vincent JB (2000) Quest for the molecular mechanism of chromium action and its relationship to diabetes. Nutr Rev 58:67–72

    Article  CAS  PubMed  Google Scholar 

  6. Chromium compounds, hazard summary-created in April 1992; Revised in January 2000. US environmental protection agency, http://www.epa.gov/ttnatw01/hlthef/chromium.html. Accessed 15 Oct 2014

  7. Eastmond DA, MacGregor JT, Slesinski RS (2008) Trivalent chromium: assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement. Crit Rev Toxicol 38(3):173–190

    Article  CAS  PubMed  Google Scholar 

  8. Cao Y, Ding L, Wang S, Liu Y, Fan J, Hu W, Liu P, Fa Y (2014) Detection and identification of Cu2+ and Hg2+ Based on the cross-reactive fluorescence responses of a dansyl-functionalized film in different solvents. ACS Appl Mater Interfaces 6:49–56

    Article  CAS  PubMed  Google Scholar 

  9. Li X, Gao X, Shi W, Ma H (2014) Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem Rev 114:590–659

    Article  CAS  PubMed  Google Scholar 

  10. Espinosa A, Otón F, Martínez R, Tárraga A, Molina P (2013) A multidimensional undergraduate experiment for easy solution and surface sensing of mercury(II) and copper(II) metal cations. J Chem Edu 90(8):1057–1060

    Article  CAS  Google Scholar 

  11. Han Y, You Y, Lee YM, Nam W (2012) Double Action: toward phosphorescence ratiometric sensing of chromium ion. Adv Mater 24:2748–2754

    Article  CAS  PubMed  Google Scholar 

  12. Saluja P, Kaur N, Singh N, Jang DO (2012) Benzimidazole-based fluorescent sensors for Cr3+ and their resultant complexes for sensing HSO4 and F. Tetrahedron 68:8551–8556

    Article  CAS  Google Scholar 

  13. Mahato P, Saha S, Suresh E, Liddo RD, Parnigotto PP, Conconi MT, Kesharwani MK, Ganguly B, Das A (2012) Ratiometric detection of Cr3+ and Hg2+ by a naphthalimide-rhodamine based fluorescent probe. Inorg Chem 51:1769–1777

    Article  CAS  PubMed  Google Scholar 

  14. Kim HN, Ren WX, Kim JS, Yoon J (2012) Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 41:3210–3244

    Article  CAS  PubMed  Google Scholar 

  15. Bazzicalupi C, Caltagirone C, Cao Z, Chen Q, Natale CD, Garau A, Lippolis V, Lvova L, Liu H, Lundstrçm I, Mostallino MC, Nieddu M, Paolesse R, Prodi L, Sgarzi M, Zaccheroni N (2013) Multimodal use of new coumarin-based fluorescent chemosensors: towards highly selective optical sensors for Hg2+ probing. Chem Eur J 19:14639–14653

    Article  CAS  PubMed  Google Scholar 

  16. Xua Z, Zhang L, Guo R, Xiang T, Wu C, Zheng Z, Yang F (2011) A highly sensitive and selective colorimetric and off–on fluorescent hemosensor for Cu2+ based on rhodamine B derivative. Sens Actuators B 156:546–552

    Article  Google Scholar 

  17. Kim H, Wang S, Kim SH, Son YA (2012) Design, synthesis and optical property of rhodamine 6G based new dye sensor. Mol Cryst Liq Cryst 566:45–53

    Article  CAS  Google Scholar 

  18. Bag B, Pal A (2011) Rhodamine-based probes for metal ion-induced chromo-/fluorogenic dual signaling and their selectivity towards Hg(II) ion. Org Biomol Chem 9:4467–4480

    Article  CAS  PubMed  Google Scholar 

  19. Lei Y, Su Y, Huo J (2011) Photophysical property of rhodamine-cored poly(amidoamine) dendrimers: simultaneous effect of spirolactam ring-opening and PET process on sensing trivalent chromium ion. J Lumin 131:2521–2527

    Article  CAS  Google Scholar 

  20. Venkateswarulu M, Sinha S, Mathew J, Koner RR (2013) Quencher displacement strategy for recognition of trivalent cations through ‘turn-on’ fluorescence signaling of an amino acid hybrid. Tetrahedron Lett 54(35):4683–4688

    Article  CAS  Google Scholar 

  21. Rios A, Mal P, Meixner AJ, Khoptyar D, Schmittel M (2011) Fluorescent chemosensors for chromium(III) ions and the Cr3+/Cr2+ ratio. Bull Chem Soc Jpn 84(6):620–622

    Article  Google Scholar 

  22. Saha S, Mahato P, Reddy UG, Suresh E, Chakrabarty A, Baidya M, Ghosh SK, Das A (2012) Recognition of Hg2+ and Cr3+ in physiological conditions by a rhodamine derivative and its application as a reagent for cell-imaging studies. Inorg Chem 51:336–345

    Article  CAS  PubMed  Google Scholar 

  23. Zhao Y, Sun Y, Lv X, Liu Y, Chen M, Guo W (2010) Rhodamine-based chemosensor for Hg2+ in aqueous solution with a broad pH range and its application in live cell imaging. Org Biomol Chem 8:4143–4147

    Article  CAS  PubMed  Google Scholar 

  24. Xu LQ, Neoh KG, Kang ET, Fu GD (2013) Rhodamine derivative-modified filter papers for colorimetric and fluorescent detection of Hg2+ in aqueous media. J Mater Chem A 1:2526–2532

    Article  CAS  Google Scholar 

  25. Wang JN, Qi Q, Zhang L, Li SH (2012) Turn-On Luminescent Sensing of metal cations via quencher displacement: rational design of a highly selective chemosensor for chromium(III). Inorg Chem 51:13103–13107

    Article  CAS  PubMed  Google Scholar 

  26. Zhou Y, Zhang J, Zhang L, Zhang Q, Ma T, Niu J (2013) A rhodamine-based fluorescent enhancement chemosensor for the detection of Cr3+ in aqueous media. Dyes Pigments 97(1):148–154

    Article  CAS  Google Scholar 

  27. Liu D, Pang T, Ma K, Jiang W, Bao X (2014) A new highly sensitive and selective fluorescence chemosensor for Cr3+ based on rhodamine B and a 4,13-diaza-18-crown 6-ether conjugate. RSC Adv 4:2563–2567

    Article  CAS  Google Scholar 

  28. Elavarasi M, Rajeshwari A, Chandrasekaran N, Mukherjee A (2013) Simple colorimetric detection of Cr(III) in aqueous solutions by as synthesized citrate capped gold nanoparticles and development of a paper based assay. Anal Methods 5:6211–6218

    Article  CAS  Google Scholar 

  29. Zhao M, Ma L, Zhang M, Cao W, Yang L, Ma LJ (2013) Glutamine-containing “turn-on” fluorescence sensor for the highly sensitive and selective detection of chromium (III) ion in water. Spectrochim Acta A Mol Biomol Spectrosc 116:460–465

    Article  CAS  PubMed  Google Scholar 

  30. Das P, Ghosh A, Bhatt H, Das A (2012) A highly selective and dual responsive test paper sensor of Hg2+/Cr3+ for naked eye detection in neutral water. RSC Adv 2:3714–3721

    Article  CAS  Google Scholar 

  31. O’Neill S, Conway S, Twellmeyer J, Egan O, Nolan K, Diamond D (1999) Ion-selective optode membranes using 9-(4-diethylamino-2- octadecanoatestyryl)-acridine acidochromic dye. Anal Chim Acta 398:1–11

    Article  Google Scholar 

  32. Zheng Y, Orbulescu J, Ji X, Andreopoulos MF, Pham MS, Leblanc MR (2003) Development of fluorescent film sensors for the detection of divalent copper. J Am Chem Soc 125:2680–2686

    Article  CAS  PubMed  Google Scholar 

  33. Lee SH, Kumar J, Tripathy SK (2000) Thin film optical sensors employing polyelectrolyte assembly. Langmuir 16(26):10482–10489

    Article  CAS  Google Scholar 

  34. Kasai H, Nalwa HS, Oikawa H, Okada S, Matsuda H, Minami N, Kakuda A, Ono K, Mukoh A, Nakanishi H (1992) A novel preparation method of organic microcrystals. Jpn J Appl Phys 31:L1132–L1134

    Article  CAS  Google Scholar 

  35. Bertorelle F, Lavabre D, Fery-Forgues S (2003) Dendrimer-tuned formation of luminescent organic microcrystals. J Am Chem Soc 125:6244–6253

    Article  CAS  PubMed  Google Scholar 

  36. Takahashi Y, Kasai H, Nakanishi H, Suzuki TM (2006) Test strips for heavy-metal ions fabricated from nanosized dye compounds. Angew Chem 118:927–930

    Article  Google Scholar 

  37. Wu JS, Hwang IC, Kim KS, Kim JS (2007) Rhodamine-based Hg2+-selective chemodosimeter in aqueous solution: fluorescent OFF−ON. Org Lett 9(5):907–910

    Article  PubMed  Google Scholar 

  38. Ahamed BN, Ghosh P (2011) An integrated system of pyrene and rhodamine-6G for selective colorimetric and fluorometric sensing of mercury(II). Inorg Chim Acta 372:100–107

    Article  CAS  Google Scholar 

  39. Boricha VP, Patra S, Chouhan YS, Sanavada SE, Paul P (2009) Synthesis, characterisation, electrochemistry and ion-binding studies of ruthenium(II) and rhenium(I) bipyridine/crown ether receptor molecules. Eur J Inorg Chem 2009:1256–1267

    Article  Google Scholar 

  40. Kaur P, Sareen D (2011) The synthesis and development of a dual-analyte colorimetric sensor: Simultaneous estimation of Hg2+ and Fe3+. Dyes Pigments 88:296–300

    Article  CAS  Google Scholar 

  41. Kumar M, Kumar N, Bhalla V, Singh H, Sharma PR, Kaur T (2011) Naphthalimide appended rhodamine derivative: through bond energy transfer for sensing of Hg2+ ions. Org Lett 13(6):1422–1425

    Article  CAS  PubMed  Google Scholar 

  42. Kumari N, Dey N, Bhattacharya S (2014) Remarkable role of positional isomers in the design of sensors for the ratiometric detection of copper and mercury ions in water. RSC Adv 4:4230–4238

    Article  CAS  Google Scholar 

  43. Wu D, Huang W, Duan C, Lin Z, Meng (2007) Highly sensitive fluorescent probe for selective detection of Hg2+ in DMF aqueous media. Inorg Chem 46:1538–1540

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

CSIR-CSMCRI Communication no. 165/2014. This work is carried out under CSIR network project CSC 0134. We are grateful to CSIR, New Delhi, for generous support towards infrastructures and core competency development. We thank V. P. Boricha and V. Vakani for recording NMR and IR, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajesh Patidar or Parimal Paul.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2378 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patidar, R., Rebary, B. & Paul, P. Colorimetric and Fluorogenic Recognition of Hg2+ and Cr3+ in Acetonitrile and their Test Paper Recognition in Aqueous Media with the Aid of Rhodamine Based Sensors. J Fluoresc 25, 387–395 (2015). https://doi.org/10.1007/s10895-015-1524-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1524-2

Keywords

Navigation