Skip to main content
Log in

Evaluation of Luminol Chemiluminescence Based on Simultaneous Introducing of Coumarin Derivatives as Green Fluorophores and Chitosan-Induced Au/Ag Alloy Nanoparticle as Catalyst for the Sensitive Determination of Glucose

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We report herein the development of a novel chemiluminescence system based on simultaneous introducing of synthetic coumarin derivatives and chitosan-induced Au/Ag alloy NPs on the luminol CL system and suggest how it may be useful for determination of glucose. Chitosan-induced Au/Ag nanoalloys in the coumarin derivatives intensified-luminol CL system, in addition to catalyze CL reaction can make a change in the process of coumarin derivatives effect as fluorophore on the luminol CL system. This phenomenon is caused by interaction between active functional groups of coumarin derivatives and chitosan. The interaction strength depends on the coumarin derivatives’ structure and their substituents. Considering the inevitable trend luminol radical and superoxide anion radical to absorption on the surface of the embedded Au/Ag nanoalloy in the chitosan matrix, it can be concluded that chitosan acts as a platform for all reagents involved in the CL reaction including coumarin derivatives, Au/Ag nanoalloy and luminol, and electron-transfer taking place on it; Placing all chemiluminescent reagents together on the chitosan network can lead to a powerful CL due to increasing rigidity of CL system. The most efficient coumarin derivative on the Au/Ag nanoalloy-fluorophore-luminol-H2O2 CL system, in relation to interaction capability with chitosan’ functional groups, was selected and the CL condition in presence of it was optimized. Whereas the glucose oxidase-mediated oxidation of glucose yields gluconic acid and H2O2, under optimum condition the most efficient CL system was applied to detection of glucose due to enzymatically production of hydrogen peroxide. The linear response range of 1.5 × 10−6–5.0 × 10−3 M and the detection limit (defined as the concentration that could be detected at the signal-to-noise ratio of 3) of 7.5 × 10−7 M was found for the glucose standards. Also, the developed method was successfully applied to determination of glucose in real serum and urine samples of diabetic patients and validated against colorimetric spectroscopy method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 2

Similar content being viewed by others

References

  1. Peng J, Wang Y, Wang J, Zhou X, Liu Z (2011) A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer. Biosens Bioelectron 28:414–420

    Article  CAS  PubMed  Google Scholar 

  2. Li J, Yu J, Zhao F, Zeng B (2007) Direct electrochemistry of glucose oxidase entrapped in nano gold particles-ionic liquid-N, Ndimethylformamide composite film on glassy carbon electrode and glucose sensing. Anal Chim Acta 587:33–40

    Article  CAS  PubMed  Google Scholar 

  3. Zhao S, Zhang K, Bai Y, Yang W, Sun C (2006) Glucose oxidase/colloidal gold nanoparticles immobilized in Nafion film on glassy carbon electrode: direct electron transfer and electrocatalysis. Bioelectrochemistry 69:158–163

    Article  CAS  PubMed  Google Scholar 

  4. Jiang L, Liu H, Liu J, Yang Q, Cai X (2008) A sensitive biosensor based on Os-complex mediator and glucose oxidase for low concentration glucose determination. J Electroanal Chem 619–620:11–16

    Article  Google Scholar 

  5. Hecht HJ, Kalisz HM, Hendle J, Schmid RD, Schomburg D (1993) Crystal structure of glucose oxidase from aspergillus niger refined at 2 · 3 Å resolution. J Mol Biol 229:153–172

    Article  CAS  PubMed  Google Scholar 

  6. Clark LC, Lyons JC (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Article  CAS  PubMed  Google Scholar 

  7. Updike SJ, Hikcks GP (1967) The enzyme electrode. Nature 214:986–988

    Article  CAS  PubMed  Google Scholar 

  8. Cass AEG, Davis G, Francis GD, Hill HAO, Aston WJ, Higgins J, Scott LDL, Plotkin EV, Turner APF (1984) Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem 56:667–671

    Article  CAS  PubMed  Google Scholar 

  9. DCCT Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986

    Article  Google Scholar 

  10. Keston AS (1956) Specific colorimetric enzymatic analytical reagents for glucose. Abstract of Papers, 129th Meeting, ACS, Dallas, Texas, p. 31C

  11. Matsubara C, Kudo K, Kawashita T, Takamura K (1985) Spectrophotometric determination of hydrogen peroxide with titanium 2-((5-bromopyridyl)azo)-5-(N-Pro-pyl-N sulfopropylamino)phenol reagent and its application to the determination of serum glucose using glucose oxidase. Anal Chem 57:1107–1109

    Article  CAS  PubMed  Google Scholar 

  12. Chen X, Yan X, Khor KA, Tay BK (2007) Multilayer assembly of positively charged polyelectrolyte and negatively charged glucose oxidase on a 3D Nafion network for sensoring glucose. Biosens Bioelectron 22:3256–3260

    Article  CAS  PubMed  Google Scholar 

  13. Yao T, Takashima K (1998) Amperometric biosensor with a composite membrane of sol–gel derived enzyme film and electrochemically generated poly (1,2-diaminobenzene) film. Biosens Bioelectron 13:67–73

    Article  CAS  PubMed  Google Scholar 

  14. Wang B, Li B, Deng Q, Dong S (1998) Amperometric glucose biosensor based on sol–gel organic–inorganic hybrid material. Anal Chem 70:3170–3174

    Article  CAS  PubMed  Google Scholar 

  15. Wang J, Musameh M, Lin Y (2003) Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J Am Chem Soc 125:2408–2409

    Article  CAS  PubMed  Google Scholar 

  16. Zhang S, Wang N, Niu Y, Sun C (2005) Immobilization of glucose oxidase on gold nanoparticles modified Au electrode for the construction of biosensor. Sensors Actuators B Chem 109:367–374

    Article  CAS  Google Scholar 

  17. Reiter S, Habermüller K, Schuhmann W (2001) A reagentless glucose biosensor based on glucose oxidase entrapped into osmium-complex modified polypyrrole films. Sensors Actuators B Chem 79:150–156

    Article  CAS  Google Scholar 

  18. Luo X, Xu J, Du Y, Chen H (2004) A glucose biosensor based on chitosan–glucose oxidase–gold nanoparticles biocomposite formed by one-step electrodeposition. Anal Biochem 334:284–289

    Article  CAS  PubMed  Google Scholar 

  19. Bostick DT, Hercules DM (1975) Quantitative determination of blood glucose using enzyme induced chemiluminescence of luminol. Anal Chem 47:447–452

    Article  CAS  PubMed  Google Scholar 

  20. Economou A, Panoutsou P, Themelis DG (2006) Enzymatic chemiluminescent assay of glucose by sequential-injection analysis with soluble enzyme and on-line sample dilution. Anal Chim Acta 572:140–147

    Article  CAS  PubMed  Google Scholar 

  21. Kanchana W, Sakai T, Teshima N, Katoh S, Grudpan K (2007) Successive determination of urinary protein and glucose using spectrophotometric sequential injection method. Anal Chim Acta 604:139–146

    Article  CAS  PubMed  Google Scholar 

  22. Zargoosh K, Shamsipur M, Qandalee M, Piltan M, Moradi L (2011) Sensitive and selective determination of glucose in human serum and urine based on the peroxyoxalate chemiluminescence reaction of a new Fluorophore. Spectrochim Acta A Mol Biomol Spectrosc 81:679–683

    Article  CAS  PubMed  Google Scholar 

  23. Matsumoto K, Waki K (1999) Simultaneous biosensing of ethanol and glucose with combined use of a rotating bioreactor and a stationary column reactor. Anal Chim Acta 380:1–6

    Article  CAS  Google Scholar 

  24. Li B, Zhang Z, Jin Y (2001) Chemiluminescence flow sensor for in vivo on-line monitoring of glucose in awake rabbit by microdialysis sampling. Anal Chim Acta 432:95–100

    Article  CAS  Google Scholar 

  25. Fang Q, Shi XT, Sun YQ, Fang ZL (1997) A flow injection microdialysis sampling chemiluminescence system for in vivo on-line monitoring of glucose in intravenous and subcutaneous tissue fluid microdialysates. Anal Chem 69:3570–3577

    Article  CAS  PubMed  Google Scholar 

  26. Obata H, Karatani H, Nakayama E (1993) Automated determination of iron in seawater by chelating resin concentration and chemiluminescence detection. Anal Chem 65:1524–1528

    Article  CAS  Google Scholar 

  27. Lin QX, Guiraum A, Escobar R (1993) Flow-injection chemiluminescence determination of cobalt(II) and manganese(II). Anal Chim Acta 283:379–385

    Article  CAS  Google Scholar 

  28. Li ZP, Li KA, Tong SY (1999) Study of the catalytic effect of copper(II)-protein complexes on luminol-H2O2 chemiluminescence reaction and its analytical application. Anal Lett 32:901–913

    Article  CAS  Google Scholar 

  29. Wang XM, Teng XL, Ma YJ, Zhou M, Li L, Chen H (2008) The chemiluminescence spectra of acidic potassium permanganate-galangin system. Chin J Lumin 29:583–585

    CAS  Google Scholar 

  30. Ci XY, Chang WB, He HB, Yue Z (1989) The quenching of o-phenanthroline fluorescence by nucleic acids and its analytical applications. Chin J Anal Lab 8:15–17

    CAS  Google Scholar 

  31. Cherrine KP, Angel MR, Miguel DLG, José LFCL, Elias AGZ, Boaventura FR (2007) A chemiluminescence flow-based procedure for determination of carbaryl in natural waters exploiting multicommutation and enzymatic reaction. J Braz Chem Soc 18:519–525

    Article  Google Scholar 

  32. Xu H, Liu CM, He Y, Tang HW, Wu QS (2010) Study on the chemiluminescence resonance energy transfer between luminol and fluorescent dyes using a linear CCD spectrometer. J Lumin 130:1872–1879

    Article  CAS  Google Scholar 

  33. Ciscato LF, Bartoloni FH, Weiss D, Beckert R, Baader WJ (2010) Experimental evidence of the occurrence of intramolecular electron transfer in catalyzed 1,2-dioxetane decomposition. J Org Chem 75:6574–6580

    Article  CAS  PubMed  Google Scholar 

  34. Li Z, Wang Y, Zhang G, Xu W, Han Y (2010) Chemiluminescence resonance energy transfer in the luminolCdTe quantum dots conjugates. J Lumin 130:995–999

    Article  CAS  Google Scholar 

  35. Chen W, Hong L, Liu AL, Liu JQ, Lin XH, Xia XH (2012) Enhanced chemiluminescence of the luminol-hydrogen peroxide system by colloidal cupric oxide nanoparticles as peroxidase mimic. Talanta 99:643–648

    Article  CAS  PubMed  Google Scholar 

  36. Zhang ZF, Cui H, Lai CZ, Liu LJ (2005) Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Anal Chem 77:3324–3329

    Article  CAS  PubMed  Google Scholar 

  37. Duan C, Cui H, Zhang Z, Liu B, Guo J, Wang W (2007) Size-dependant inhibition and enhancement by gold nanoparticles of luminol-ferricyanide chemiluminescence. J Phys Chem C 111:4561–4566

    Article  CAS  Google Scholar 

  38. Cui H, Guo JZ, Li N, Liu LJ (2008) Gold nanoparticle triggered chemiluminescence between luminol and AgNO3. J Phys Chem C 112:11319–11323

    Article  CAS  Google Scholar 

  39. Safavi A, Absalan G, Bamdad F (2008) Effect of gold nanoparticle as a novel nanocatalyst on luminol-hydrazine chemiluminescence system and its analytical application. Anal Chim Acta 610:243–248

    Article  CAS  PubMed  Google Scholar 

  40. Chen H, Gao F, He R, Cui DX (2007) Chemiluminescence of luminol catalyzed by silver nanoparticles. J Colloid Interface Sci 315:158–163

    Article  CAS  PubMed  Google Scholar 

  41. Xu SL, Cui H (2007) Luminol chemiluminescence catalysed by colloidal platinum nanoparticles. Luminescence 22:77–87

    Article  CAS  PubMed  Google Scholar 

  42. Li S, Tao S, Wang F, Hong J, Wei X (2010) Chemiluminescence reactions of luminol system catalyzed by nanoparticles of a gold/silver alloy. Microchim Acta 169:73–78

    Article  CAS  Google Scholar 

  43. Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Rev Nanotoday 3:40–47

    Article  CAS  Google Scholar 

  44. Lan D, Li B, Zhang Z (2008) Chemiluminescence flow biosensor for glucose based on gold nanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase. Biosens Bioelectron 24:934–938

    Article  CAS  Google Scholar 

  45. Kim K, Kim KL, Lee SJ (2005) Surface enrichment of Ag atoms in Au/Ag alloy nanoparticles revealed by surface enhanced Raman scattering spectroscopy. Chem Phys Lett 403:77–82

    Article  CAS  Google Scholar 

  46. Li F, Chen W, Tang C, Zhang S (2009) Development of hydrogen peroxide biosensor based on in situ covalent immobilization of horseradish peroxidase by one-pot polysaccharide-incorporated sol–gel process. Talanta 77:1304–1308

    Article  CAS  PubMed  Google Scholar 

  47. Ngah W, Teong L, Hanafah M (2011) Adsorption of dyes and heavy metal ions by chitosan composites. Rev Carbohydr Polym 83:1446–1456

    Article  Google Scholar 

  48. Fan C, Li W, Zhao S, Chen J, Li X (2008) Efficient one pot synthesis of chitosan-induced gold nanoparticles by microwave irradiation. Mater Lett 62:3518–3520

    Article  CAS  Google Scholar 

  49. Hao C, Ding L, Zhang XJ, Ju HX (2008) Biocompatible conductive architecture of carbon nanofiber-doped chitosan prepared with controllable electrollable electrodeposition for cytosensing. Anal Chem 79:4442–4447

    Article  Google Scholar 

  50. Huang HZ, Yang XR (2003) Chitosan mediated assembly of gold nanoparticles multilayer. Colloids Surf A 226:77–86

    Article  CAS  Google Scholar 

  51. Lin JH, Qu W, Zhang SS (2007) Disposable biosensor based on enzyme immobilized on Au–chitosan-modified indium tin oxide electrode with flow injection amperometric analysis. Anal Biochem 360:288–293

    Article  CAS  PubMed  Google Scholar 

  52. Hua LJ, Hui Z, ShuSheng Z (2009) New bienzymatic strategy for glucose determination by immobilized-gold nanoparticle-enhanced chemiluminescence. Sci China Ser B 52:196–202

    Article  Google Scholar 

  53. Still WC, Kahn M, Mitra A (1978) Rapid chromatographic technique for preparative separations with moderate resolution. J Org Chem 43:2923–2925

    Article  CAS  Google Scholar 

  54. Brondania D, Scheeren CW, Dupont J, Vieira IC (2009) Biosensor based on platinum nanoparticles dispersed in ionic liquid and laccase for determination of adrenaline. Sensors Actuators B Chem 140:252–259

    Article  Google Scholar 

  55. Chaichi MJ, Alijanpour SO (2013) Determination of vitamin C in drugs using of an optimized novel TCPO–Amplex red–gold/silver alloy nanoparticles–H2O2 chemiluminescence method by the Box–Behnken design. J Lumin 134:195–200

    Article  CAS  Google Scholar 

  56. Harish S, Sabarinathan R, Joseph J, Phani KLN (2011) Role of pH in the synthesis of 3-aminopropyl trimethoxysilane stabilized colloidal gold/silver and their alloy sols and their application to catalysis. Mater Chem Phys 127:203–207

    Article  CAS  Google Scholar 

  57. Schuster GB (1979) Chemiluminescence of organic peroxides. Acc Chem Res 12:366–373

    Article  CAS  Google Scholar 

  58. Rurack K, Spieles M (2011) Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600–1000 nm. Anal Chem 83:1232–1242

    Article  CAS  PubMed  Google Scholar 

  59. Lakowicz JR (1999) Principle of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum Publishers, NewYork

    Book  Google Scholar 

  60. Vauthier C, Zandanel C, Ramon AL (2013) Chitosan-based nanoparticles for in vivo delivery of interfering agents including siRNA. Curr Opin Colloid Interface Sci 18:406–418

    Article  CAS  Google Scholar 

  61. Yanxia X, Chengguo H, Shengshui H (2008) A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin in Hb–Ag sol films. Sensors Actuators B Chem 130:816–822

    Article  Google Scholar 

  62. Liping M, Ruo Y, Yaqin C, Shihong C (2009) Amperometric hydrogen peroxide biosensor based on the immobilization of HRP on DNA–silver nanohybrids and PDDA-protected gold nanoparticles. J Mol Catal B Enzym 56:215–220

    Article  Google Scholar 

  63. Balamurugan A, Chen SM (2009) Silver nanograins incorporated PEDOT modified electrode for electrocatalytic sensing of hydrogen peroxide. Electroanalysis 21:1419–1423

    Article  CAS  Google Scholar 

  64. Song MJ, Hwang SW, Whang D (2010) Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection. Talanta 80:1648–1652

    Article  CAS  PubMed  Google Scholar 

  65. Santafe AAM, Che BD, Blum LJ, Girard-Egrot AP, Marquette CA (2010) 1-ethyl-3-methylimidazolium ethylsulfate/copper catalyst for the enhancement of glucose chemiluminescent detection: effects on light emission and enzyme activity. Anal Chem 82:2401–2404

    Article  CAS  PubMed  Google Scholar 

  66. Li B, Lan D, Zhang Z (2008) Chemiluminescence flow-through biosensor for glucose with eggshell membrane as enzyme immobilization platform. Anal Biochem 374:64–70

    Article  CAS  PubMed  Google Scholar 

  67. Merényi G, Lind JS, Eriksen TE (1990) Luminol chemiluminescence: chemistry, excitation, emitter. J Biolumin Chemilumin 5:53–56

    Article  PubMed  Google Scholar 

  68. Burdo TG, Seitz WR (1975) Mechanism of cobalt catalysis of luminol chemiluminescence. Anal Chem 47:1639–1643

    Article  CAS  Google Scholar 

  69. Li Y, Zhu C, Wang L (2005) A highly sensitive and selective assay for cysteine using the chemiluminescence reaction of luminol and hydrogen peroxide. Microchim Acta 150:95–99

    Article  CAS  Google Scholar 

  70. Haghighi B, Khosravi M, Barati A (2014) Fabrication of gallium hexacyanoferrate modified carbon ionic liquid paste electrode for sensitive determination of hydrogen peroxide. Mater Sci Eng C Mater 40:204–211

    Article  CAS  Google Scholar 

  71. Zhong X, Chai YQ, Yuan R (2014) A novel strategy for synthesis of hollow gold nanosphere and its application in electrogenerated chemiluminescence glucose biosensor. Talanta 128:9–14

    Article  CAS  PubMed  Google Scholar 

  72. Zargoosh K, Chaichi MJ, Shamsipur M, Asghari S (2012) Highly sensitive glucose biosensor based on the effective immobilization of glucose oxidase/carbon-nanotube and gold nanoparticle in nafion film and peroxyoxalate chemiluminescence reaction of a new fluorophore. Talanta 93:37–43

    Article  CAS  PubMed  Google Scholar 

  73. Wannajuk K, Jamkatoke M, Tuntulani T, Tomapatanaget B (2012) Highly specific-glucose fluorescence sensing based on boronic anthraquinone derivatives via the GOx enzymatic reaction. Tetrahedron 68:8899–8904

    Article  CAS  Google Scholar 

  74. Cubuk S, Yetimoglu EK, Kahraman MV, Demiribilek D, Firlak M (2013) Development of photopolymerized fluorescence sensor for glucose analysis. Sensors Actuators B Chem 181:187–193

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank goes to Danesh clinical laboratory in Babol which provided us serum samples and valuable information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Chaichi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaichi, M.J., Alijanpour, S.O., Asghari, S. et al. Evaluation of Luminol Chemiluminescence Based on Simultaneous Introducing of Coumarin Derivatives as Green Fluorophores and Chitosan-Induced Au/Ag Alloy Nanoparticle as Catalyst for the Sensitive Determination of Glucose. J Fluoresc 25, 263–275 (2015). https://doi.org/10.1007/s10895-015-1502-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1502-8

Keywords

Navigation